Question

Consider two widely separated conducting spheres, 1 and 2, the second having three times the diameter...

Consider two widely separated conducting spheres, 1 and 2, the second having three times the diameter of the first. The smaller sphere initially has a positive charge q = 5.00×10-6 C, and the larger one is initially uncharged. You now connect the spheres with a long thin wire. How are the final potentials V1 and V2 of the spheres related? Find the final charges q1 and q2. What is the ratio of the final surface charge density of sphere 1 to that of sphere 2?

Homework Answers

Answer #1

Dear student|

[ ] If you have any query regarding this solution, don't forget to comment I will immediately sort it out.and if you are satisfied and find helpful then KINDLY GIVE THE RATING .your rating is very important to me.

Thanks for asking ||

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider two widely separated conducting spheres, 1 and 2, the second having three times the diameter...
Consider two widely separated conducting spheres, 1 and 2, the second having three times the diameter of the first. The smaller sphere initially has a positive charge q = 5.00
There are two identical, positively charged conducting spheres fixed in space. The spheres are 32.0 cm...
There are two identical, positively charged conducting spheres fixed in space. The spheres are 32.0 cm apart (center to center) and repel each other with an electrostatic force of F1 = 0.0750 N. Then, a thin conducting wire connects the spheres, redistributing the charge on each sphere. When the wire is removed the spheres still repel but with a force of F2 = 0.100 N. Using this information, find the initial charge on each sphere, q1 and q2 if initially...
There are two identical, positively charged conducting spheres fixed in space. The spheres are 47.8 cm...
There are two identical, positively charged conducting spheres fixed in space. The spheres are 47.8 cm apart (center to center) and repel each other with an electrostatic force of F1 = 0.0720 N. Then, a thin conducting wire connects the spheres, redistributing the charge on each sphere. When the wire is removed the spheres still repel but with a force of F2 = 0.115 N. Using this information, find the initial charge on each sphere, q1 and q2 if initially...
There are two identical, positively charged conducting spheres fixed in space. The spheres are 49.0 cm...
There are two identical, positively charged conducting spheres fixed in space. The spheres are 49.0 cm apart (center to center) and repel each other with an electrostatic force of F1 = 0.0705 N. Then, a thin conducting wire connects the spheres, redistributing the charge on each sphere. When the wire is removed the spheres still repel but with a force of F2 = 0.115 N. Using this information, find the initial charge on each sphere, q1 and q2 if initially...
1. Consider two concentric spherical conducting shells of radii a and b (b > a) kept...
1. Consider two concentric spherical conducting shells of radii a and b (b > a) kept at potentials V1 and V2, respectively. For the following parts, express all your answers in terms of V1, V2, a, and b. (a) Calculate the charges q1 and q2 on the two shells. (b) Calculate the potential in the region between the shells. (c) Calculate the work that needs to done to set up this charge configuration. (d) The shells are now connected to...
Two identical conducting spheres (#1 and #2) carry charges Q and 3Q respectively. They are separated...
Two identical conducting spheres (#1 and #2) carry charges Q and 3Q respectively. They are separated by a distance r much larger than their diameters. Another identical conducting sphere (#3) is uncharged. Sphere #3 is first touched to #1, then to #2, and finally removed. As a result, the Coulomb force between #1 and #2, which was originally F, becomes: 1-7F/8 2-6F/15 3-3F/14 4-9F 5-7F/24
Two conducting spheres have identical radii. Initially they have charges of opposite sign and unequal magnitudes...
Two conducting spheres have identical radii. Initially they have charges of opposite sign and unequal magnitudes with the magnitude of the positive charge larger than the magnitude of the negative charge. They attract each other with a force of 0.269 N when separated by 0.4 m. The spheres are suddenly connected by a thin conducting wire, which is then removed. Now the spheres repel each other with a force of 0.024 N. What is the magnitude of the positive charge?...
Two identical conducting spheres, fixed in place, attract each other with an electrostatic force of -0.2848...
Two identical conducting spheres, fixed in place, attract each other with an electrostatic force of -0.2848 N when separated by 50 cm, center-to-center. The spheres are then connected by a thin conducting wire. When the wire is removed, the spheres repel each other with an electrostatic force of 0.0608 N. What were the initial charges on the spheres? Since one is negative and you cannot tell which is positive or negative, there are two solutions. Take the absolute value of...
Two identical conducting spheres, fixed in place, attract each other with an electrostatic force of -0.5437...
Two identical conducting spheres, fixed in place, attract each other with an electrostatic force of -0.5437 N when separated by 50 cm, center-to-center. The spheres are then connected by a thin conducting wire. When the wire is removed, the spheres repel each other with an electrostatic force of 0.0032 N. What were the initial charges on the spheres? Since one is negative and you cannot tell which is positive or negative, there are two solutions. Take the absolute value of...
Two identical conducting spheres, fixed in place, attract each other with an electrostatic force of -1.0112...
Two identical conducting spheres, fixed in place, attract each other with an electrostatic force of -1.0112 N when separated by 50 cm, center-to-center. The spheres are then connected by a thin conducting wire. When the wire is removed, the spheres repel each other with an electrostatic force of 0.1165 N. What were the initial charges on the spheres? Since one is negative and you cannot tell which is positive or negative, there are two solutions. Take the absolute value of...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT