Question

Two conducting spheres have identical radii. Initially they have charges of opposite sign and unequal magnitudes...

Two conducting spheres have identical radii. Initially they have charges of opposite sign and unequal magnitudes with the magnitude of the positive charge larger than the magnitude of the negative charge. They attract each other with a force of 0.269 N when separated by 0.4 m. The spheres are suddenly connected by a thin conducting wire, which is then removed. Now the spheres repel each other with a force of 0.024 N. What is the magnitude of the positive charge? Answer in units of C. What is the negative charge? Answer in units of C.

Homework Answers

Answer #1

Let :F1= 0.269 N,F2= 0.024 N,r= 0.4 m,andq1>|q2

Applying Coulomb’s law, the electrostaticforce between the chargesq1andq2separatedby a
distance r is

F = Ke*q1q2/r^2

Initially both spheres have opposite charges,with q1>|q2|. from conservation of electric charges,
if the Frst sphere loses charges qx,the second sphere will gain charges qx.
After the wire is removed, both spheres have the same Fnal chargesq3, so q1−qx=q3
and q2+qx=q3. from Coulomb’s law

F2 = Ke*q3^2/r^2 = q3^2 = r^2F2/Ke^2

q3 = √r^2F2/Ke = √(0.4)^2(0.024)/8.98*10^9N.m/C^2 = 6.539*10^-7C
Further:

-F1 =Keq1q2/r^2 = Ke*(q3+qx)(q3-qx)/r^2

= Ke (q3^2-qx^2)/r^2

-r^2F1/Ke = q3^2-qx^2
qx^2 = r^2F1/Ke^2 + r^2F2/Ke

qx = √r^2(F1+F2)/Ke

= √(0.4)^2(0.269+0.024)/8.987*10^9 = 2.283*10^-6C

Finally

q1 = q3+qx
= 6.539*10^-7+2.283*10^-6 = 2.9369*10^-6C

What is the negative charge?

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Two identical conducting spheres, fixed in place, attract each other with an electrostatic force of 0.107...
Two identical conducting spheres, fixed in place, attract each other with an electrostatic force of 0.107 N when their center-to-center separation is 46.6 cm. The spheres are then connected by a thin conducting wire. When the wire is removed, the spheres repel each other with an electrostatic force of 0.0321 N. Of the initial charges on the spheres, with a positive net charge, what was (a) the negative charge on one of them and (b) the positive charge on the...
Two identical conducting spheres, fixed in place, attract each other with an electrostatic force of 0.155...
Two identical conducting spheres, fixed in place, attract each other with an electrostatic force of 0.155 N when their center-to-center separation is 45.4 cm. The spheres are then connected by a thin conducting wire. When the wire is removed, the spheres repel each other with an electrostatic force of 0.0386 N. Of the initial charges on the spheres, with a positive net charge, what was (a) the negative charge on one of them and (b) the positive charge on the...
Two identical conducting spheres, fixed in place, attract each other with an electrostatic force of 0.149...
Two identical conducting spheres, fixed in place, attract each other with an electrostatic force of 0.149 N when their center-to-center separation is 55.0 cm. The spheres are then connected by a thin conducting wire. When the wire is removed, the spheres repel each other with an electrostatic force of 0.0369 N. Of the initial charges on the spheres, with a positive net charge, what was (a) the negative charge on one of them and (b) the positive charge on the...
Two identical conducting spheres, fixed in place, attract each other with an electrostatic force of 0.149...
Two identical conducting spheres, fixed in place, attract each other with an electrostatic force of 0.149 N when their center-to-center separation is 55.0 cm. The spheres are then connected by a thin conducting wire. When the wire is removed, the spheres repel each other with an electrostatic force of 0.0369 N. Of the initial charges on the spheres, with a positive net charge, what was (a) the negative charge on one of them and (b) the positive charge on the...
Two identical conducting spheres, fixed in place, attract each other with an electrostatic force of -0.5574...
Two identical conducting spheres, fixed in place, attract each other with an electrostatic force of -0.5574 N when separated by 50 cm, center-to-center. The spheres are then connected by a thin conducting wire. When the wire is removed, the spheres repel each other with an electrostatic force of 0.0325 N. What were the initial charges on the spheres? Since one is negative and you cannot tell which is positive or negative, there are two solutions. Take the absolute value of...
Two identical conducting spheres, fixed in place, attract each other with an electrostatic force of -0.3797...
Two identical conducting spheres, fixed in place, attract each other with an electrostatic force of -0.3797 N when separated by 50 cm, center-to-center. The spheres are then connected by a thin conducting wire. When the wire is removed, the spheres repel each other with an electrostatic force of 0.0608 N. What were the initial charges on the spheres? Since one is negative and you cannot tell which is positive or negative, there are two solutions. Take the absolute value of...
Two identical conducting spheres, fixed in place, attract each other with an electrostatic force of -0.2071...
Two identical conducting spheres, fixed in place, attract each other with an electrostatic force of -0.2071 N when separated by 50 cm, center-to-center. The spheres are then connected by a thin conducting wire. When the wire is removed, the spheres repel each other with an electrostatic force of 0.1165 N. What were the initial charges on the spheres? Since one is negative and you cannot tell which is positive or negative, there are two solutions. Take the absolute value of...
Two identical conducting spheres, fixed in place, attract each other with an electrostatic force of -0.2848...
Two identical conducting spheres, fixed in place, attract each other with an electrostatic force of -0.2848 N when separated by 50 cm, center-to-center. The spheres are then connected by a thin conducting wire. When the wire is removed, the spheres repel each other with an electrostatic force of 0.0608 N. What were the initial charges on the spheres? Since one is negative and you cannot tell which is positive or negative, there are two solutions. Take the absolute value of...
Two identical conducting spheres, fixed in place, attract each other with an electrostatic force of -0.5437...
Two identical conducting spheres, fixed in place, attract each other with an electrostatic force of -0.5437 N when separated by 50 cm, center-to-center. The spheres are then connected by a thin conducting wire. When the wire is removed, the spheres repel each other with an electrostatic force of 0.0032 N. What were the initial charges on the spheres? Since one is negative and you cannot tell which is positive or negative, there are two solutions. Take the absolute value of...
Two identical conducting spheres, fixed in place, attract each other with an electrostatic force of -1.0112...
Two identical conducting spheres, fixed in place, attract each other with an electrostatic force of -1.0112 N when separated by 50 cm, center-to-center. The spheres are then connected by a thin conducting wire. When the wire is removed, the spheres repel each other with an electrostatic force of 0.1165 N. What were the initial charges on the spheres? Since one is negative and you cannot tell which is positive or negative, there are two solutions. Take the absolute value of...