Question

A particle of mass 0.300 kg is attached to the 100 cm mark of a meter...

A particle of mass 0.300 kg is attached to the 100 cm mark of a meter stick of mass 0.200 kg. The meter stick rotates on a horizontal, frictionless table with an angular speed of 4.00 rad/s.]

(a) Calculate the angular momentum of the system when the stick is pivoted about an axis perpendicular to the table through the 75.0 cm mark.

(b) What is the angular momentum when the stick is pivoted about an axis perpendicular to the table through the 0 cm mark?

Homework Answers

Answer #1

formula for angular momentum is

L = I w

the total angualr momentum of the system when the stick is pivoted about an axis perpendicular to the table through the 75.0 cm mark is

L total = I_ toal w

=( I_ stick + I particle) w

=( ( mL^2/12 + M( L- L')^2)w

= ( 0.2( 1)^2/12 +0.3 ( 1-0.75)^2) 4 rad/s

=0.141 kg m^2/s

(b)

the total angualr momentum of the system  when the stick is pivoted about an axis perpendicular to the table through the 0 cm mark is

L total = I_ toal w

=( I_ stick + I particle) w

=( ( mL^2/3 + M( L- 0)^2)w

= ( 0.2( 1)^2/3 +0.3 ( 1-0)^2) 4 rad/s

=1.46 kg m^2/s

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A particle of mass 0.350 kg is attached to the 100-cm mark of a meter stick...
A particle of mass 0.350 kg is attached to the 100-cm mark of a meter stick of mass 0.125 kg. The meter stick rotates on a frictionless, horizontal table with an angular speed of 6.00 rad/s. (a) Calculate the angular momentum of the system when the stick is pivoted about an axis perpendicular to the table through the 50.0-cm mark. _____ kg · m2/s (b) Calculate the angular momentum of the system when the stick is pivoted about an axis...
A particle of mass 0.350 kg is attached to the 100-cm mark of a meterstick of...
A particle of mass 0.350 kg is attached to the 100-cm mark of a meterstick of mass 0.150 kg. The meterstick rotates on the surface of a frictionless, horizontal table with an angular speed of 6.00 rad/s. (a) Calculate the angular momentum of the system when the stick is pivoted about an axis perpendicular to the table through the 50.0-cm mark. (b) Calculate the angular momentum of the system when the stick is pivoted about an axis perpendicular to the...
A 2.0-m measuring stick of mass 0.215 kg is resting on a table. A mass of...
A 2.0-m measuring stick of mass 0.215 kg is resting on a table. A mass of 0.500 kg is attached to the stick at a distance of 74.0 cm from the center. Both the stick and the table surface are frictionless. The stick rotates with an angular speed of 5.40 rad/s. (a) If the stick is pivoted about an axis perpendicular to the table and passing through its center, what is the angular momentum of the system? kg · m2/s...
A 1.50-kg rod 1.00m long has a 2.00-kg mass attached to one end and a 4.00-kg...
A 1.50-kg rod 1.00m long has a 2.00-kg mass attached to one end and a 4.00-kg mass attached to the other. The system rotates at a constant angular speed about a fixed axis perpendicular to the rod that passes through the rod 40.0 cm from the end with the 4.00-kg mass attached. The angular speed of the system is 150 rad/s. a) What is the total moment of inertia of this system (including the rod and two masses) about the...
Calculate the rotational inertia of a meter stick, with mass 0.633 kg, about an axis perpendicular...
Calculate the rotational inertia of a meter stick, with mass 0.633 kg, about an axis perpendicular to the stick and located at the 27.4 cm mark. (Treat the stick as a thin rod.)
Calculate the rotational inertia of a meter stick with mass m=0.56 kg about an axis perpendicular...
Calculate the rotational inertia of a meter stick with mass m=0.56 kg about an axis perpendicular to set stick and located at the 20 cm mark. (Treat the stick as a thin rod).
A meter stick is found to balance at the 49.7-cm mark when placed on a fulcrum....
A meter stick is found to balance at the 49.7-cm mark when placed on a fulcrum. When a 44.0-gram mass is attached at the 24.5-cm mark, the fulcrum must be moved to the 39.2-cm mark for balance. What is the mass of the meter stick? ________g
A particle of mass 5.00 kg is attached to a spring with a force constant of...
A particle of mass 5.00 kg is attached to a spring with a force constant of 100 N/m. It is oscillating on a horizontal frictionless surface with an amplitude of 2.00 m. A 7.00 kg object is dropped vertically on top of the 5.00 kg object as it passes through its equilibrium point. The two objects stick together. (a) By how much does the amplitude of the vibrating system change as a result of collision? (b) By how much does...
At time t = 4 sec, a particle of mass M = 4.5 kg is at...
At time t = 4 sec, a particle of mass M = 4.5 kg is at the position (x,y,z) = (4,4,6) m and has velocity (2,1,-2) m/s. 1)What is the x component of the particle's angular momentum about the origin? 2)What is the y component of the particle's angular momentum about the origin? 3)What is the z component of the particle's angular momentum about the origin? 4)Now an identical particle is placed at (x,y,z) = (-4,-4,-6) m, with velocity (-2,-1,2)...
At time t = 11.5 sec, a particle of mass M = 5 kg is at...
At time t = 11.5 sec, a particle of mass M = 5 kg is at the position (x,y,z) = (4,4,6) m and has velocity (2,1,-2) m/s. 1) What is the x component of the particle's angular momentum about the origin? 2) What is the y component of the particle's angular momentum about the origin? 3) What is the z component of the particle's angular momentum about the origin? 4) Now an identical particle is placed at (x,y,z) = (-4,-4,-6)...