Question

A longitudinal wave propagates through a medium. Which of the following, if any, holds true? A....

A longitudinal wave propagates through a medium. Which of the following, if any, holds true?

A. Elements of the medium are displaced perpendicular to the direction of propagation of the wave

B. The wavelength is equal to the product of the propagation speed and the oscillation period

C. Elements of the medium are displaced back and forth along the axis of propagation of the wave

D. The wavelength is equal to the ratio of the propagation speed and the oscillation frequency

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
On a medium that propagates waves with the equation: Y = 0.02 Sin (6π X -...
On a medium that propagates waves with the equation: Y = 0.02 Sin (6π X - 12π t) m. Specify: a. Amplitude, frequency, period b. Wavelength c. The speed of the wave propagation
An electromagnetic wave in a medium is given by the following wave function expression: E=5E0(i-2j)sin(kx-wt). The...
An electromagnetic wave in a medium is given by the following wave function expression: E=5E0(i-2j)sin(kx-wt). The wave is known to have a wavelength of 690 nm and frequency of 3.2*1014 Hz. Also E0=104 V/m. For this wave find the propagation number, angular frequency, direction of propagation, speed of wave, index of refraction of medium, direction of E oscillation, direction of corresponding B oscillation, amplitude of E, amplitude of B, and calculate the irradiance of this wave.
If we move a refrigerator magnet back and forth, we generate an electromagnetic wave that propagates...
If we move a refrigerator magnet back and forth, we generate an electromagnetic wave that propagates away from us. Assume we move the magnet along the z-axis centered on the origin with an amplitude of 10 cm and with a frequency of 2.0 Hz. Consider a loop in the xy-plane centered on the origin with a radius of 2.0 cm. Assume that when the magnet is closest to the loop, the magnetic field within the loop has a spatially uniform...
TRUE and FALSE Questions 5. Temperature of as gas is the average kinetic energy of the...
TRUE and FALSE Questions 5. Temperature of as gas is the average kinetic energy of the gas molecules.             ANS: 6. Wavelength of a wave is the distance between two successive like points.             ANS:    7. In longitudinal waves, the amplitude of the wave parallel to the direction of propagation.             ANS: 8. Sound is an example of transverse wave             ANS:    9. Speed of a wave is the product of its wavelength and frequency.             ANS:    10. Frequency of sound wave...
A wave travels along a taut string in the positive x-axis direction. Its wavelength is 40...
A wave travels along a taut string in the positive x-axis direction. Its wavelength is 40 cm and its speed of propagation through the string is 80 m / s. The amplitude of the wave is 0.60 cm. At t = 0 the point of the chord at x = 0 is at the point of maximum oscillation amplitude, y = + A. a) Write the equation of the wave in the form of sine [y = A sin (kx...
A wave travels along a taut string in the positive x-axis direction. Its wavelength is 40...
A wave travels along a taut string in the positive x-axis direction. Its wavelength is 40 cm and its speed of propagation through the string is 80 m / s. The amplitude of the wave is 0.60 cm. At t = 0 the point of the chord at x = 0 is at the point of maximum oscillation amplitude, y = + A. a) Write the equation of the wave in the form of sine [y = A sin (kx...
A continuous sinusoidal longitudinal wave is sent along a very long coiled spring from an attached...
A continuous sinusoidal longitudinal wave is sent along a very long coiled spring from an attached oscillating source. The wave travels in the negative direction of an x axis; the source frequency is 24 Hz; at any instant the distance between successive points of maximum expansion in the spring is 20 cm; the maximum longitudinal displacement of a spring particle is 0.69 cm; and the particle at x = 0 has zero displacement at time t = 0. If the...
*I NEED ALL THE QUESTIONS ANSWERS* 1.When the period of oscillation decreases, the (a) amplitude increases,...
*I NEED ALL THE QUESTIONS ANSWERS* 1.When the period of oscillation decreases, the (a) amplitude increases, (b) frequency    increases, (c) wavelength increases, (d) frequency decreases. 2.Sound is (a) transverse wave, (b) longitudinal wave, (c) standing wave, (d) magnetic wave. 3.When two waves interfere, which of the following add? (a) wavelength, (b) frequency, (c) phase, (d) amplitude. 4.The wave speed is equal to (a) the ratio of the frequency and wavelength, (b) the ratio of the frequency and the period, (c)...
(1A) A transverse sinusoidal wave travels along a string with a constant speed 10 m/s. The...
(1A) A transverse sinusoidal wave travels along a string with a constant speed 10 m/s. The acceleration of a small lump of mass on the string (a) varies sinusoidally in time in a direction perpendicular to the string, (b) varies sinusoidally in time in a direction parallel to the string, (c) is 10 m/s 2 , (d) is zero. (1B) In a periodic transverse wave on a string the value of the wave speed depends on (a) amplitude, (b) wavelength,...
18. Sound waves in the Earth’s atmosphere will bend from warm air towards cold air because...
18. Sound waves in the Earth’s atmosphere will bend from warm air towards cold air because a. the air density is lower. b. the speed of sound is faster in cold air. c. the speed of sound is slower in cold air. d. of diffraction. 19. For any longitudinal or transverse wave, the speed is given by a. the product of wavelength and period (v = λT). b. the product of period and frequency (v = Tf). c. the product...