Question

zinc has a work function of 4.3eV. A) what is the longest wavelength of light that...

zinc has a work function of 4.3eV. A) what is the longest wavelength of light that will release an electron form a zinc surface? B) a 4.7 eV photon strikes the surface and an electron is emitted. What is the maximum possible speed of the electron? explain with diagrams/figures please

Homework Answers

Answer #1

Please rate..

Thanku ..?

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Light with a wavelength of 425 nm falls on a photoelectric surface that has a work...
Light with a wavelength of 425 nm falls on a photoelectric surface that has a work function of 2.00 eV. What is the maximum speed of any emitted photoelectrons?
Find the longest wavelength of light that can eject an electron from gold. The work function...
Find the longest wavelength of light that can eject an electron from gold. The work function of gold is 5.1 eV (1eV= 1.6x10^-19 joules).
a) A photon with a wavelength of 3.00x10-7 m strikes an electron at rest. The scattered...
a) A photon with a wavelength of 3.00x10-7 m strikes an electron at rest. The scattered photon has a wavelength of 4.00x10-7 m. Calculate the KE of the electron. b) Light with a wavelength of 425 nm falls on a photoelectric surface that has a work function of 2.00 eV. What is the maximum speed of the ejected electron? c) A photon of wavelength 43 nm is incident upon a metal in a photoelectric apparatus. A stopping voltage of 21...
A certain metal has a work function of 2.6 eV. (a) What is the shortest wavelength...
A certain metal has a work function of 2.6 eV. (a) What is the shortest wavelength of the electromagnetic radiation that will eject electrons from this material? (b) If light of wavelength 420 nm is used, what will be the speed of the emitted electrons?
Light of wavelength 235 nm is incident on Magnesium in a photoelectric effect experiment. The work...
Light of wavelength 235 nm is incident on Magnesium in a photoelectric effect experiment. The work function of Magnesium is 3.68 eV. (a) What is the maximum kinetic energy of the emitted electrons, in eV? (b)What is the maximum velocity of the emitted electrons, in m/s? (c) What is the stopping potential, in Volts, that results in no collected photoelectrons? (d) Light of wavelength 235 nm is now incident on lead (work function 5.40 eV). What is the maximum kinetic...
An X-ray photon of wavelength 0.989 nm strikes the surface of a material. The emitted photoelectron...
An X-ray photon of wavelength 0.989 nm strikes the surface of a material. The emitted photoelectron has a speed of 1.85 × 107 m s–1 . What is the binding energy of the electron  in a.) eV and b.) kJ/mol?
Consider a laser pointer that emits red light with wavelength 650 nm. This light is used...
Consider a laser pointer that emits red light with wavelength 650 nm. This light is used for a photoelectric effect experiment where the anode in the evacuated glass tube is made up of a material that has work function equal to 1 eV. [1] What is the energy of an individual photon that comes out of the laser pointer? [2] What is the maximum kinetic energy of an emitted electron?
Light of wavelength 300 nm strikes a metal whose work function is 2.0 eV. What is...
Light of wavelength 300 nm strikes a metal whose work function is 2.0 eV. What is the shortest de Broglie wavelength for the electrons that are produced as photoelectrons? Express your answer using two significant figures. λmin=    m
Ultraviolet light of wavelength 350 nm is directed at a potassiums surface. The work function of...
Ultraviolet light of wavelength 350 nm is directed at a potassiums surface. The work function of potassiums is 2.2 eV. a) Calculate the maximum energy of photoelectrons in units of eV. b) Explain why x-ray is not used in the photoelectric effect.
a) A photoelectric surface has a work function of 3.30 x 10-19 J. What is the...
a) A photoelectric surface has a work function of 3.30 x 10-19 J. What is the threshold frequency of this surface? (format of a.bc x 10de Hz) b) What is the stopping voltage of an electron that has 5.40 x 10-19 J of kinetic energy? (3 digit answer) c) A photoelectric surface requires a light of maximum wavelength of 675 nm to cause electron emission. What is the work function (in eV) of this surface? (3 digit answer) d) A...