Question

How does decreasing the height of the walls of a box influence the probability distribution of...

How does decreasing the height of the walls of a box influence the probability distribution of a quantum mechanical particle-in-a-box? [walls, potential energy, infinite, finite, tunneling, probability, wavelength, energy...] Use word, no equation. Thank you

Homework Answers

Answer #1

If the Potential walls are infinity, the particle is simply bounded inside the region (box) which implies that the probability of finding the particle inside the box is literally 1.

However, when the Potential is decreased to finite non-zero values, the particle's wavefunction exponentially decays outside the walls implying the particle has a finite non-zero probability of existing outside the box. This probability is related to the difference in Energy of the particle and Potential barrier.

As the potential gets smaller, it becomes close to the energy of the particle which thus increases the extent till where the wavefunction of the particle will penetrate outside the potential walls thereby implying that the probability of the particle existing outside has increased.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
How does decreasing the height of the walls of a box influence the probability distribution of...
How does decreasing the height of the walls of a box influence the probability distribution of a quantum mechanical particle-in-a-box? [walls, potential energy, infinite, finite, tunneling, probability, wavelength, energy...]
1. An electron is confined to a region of size 0.15 nm (i.e., infinite potential walls...
1. An electron is confined to a region of size 0.15 nm (i.e., infinite potential walls at either end). (a) (5 pts) What is the ground state energy in eV? (b) (5 pts) The electron falls from the 5th excited state to the 3rd excited state, emitting a photon in the process. What is the wavelength of the photon in nm? 2. Refer to the previous problem. (a) (4 pts) When the electron is in the 5th excited state, at...
Suppose that a ball is dropped from some height. What equation would you use to calculate...
Suppose that a ball is dropped from some height. What equation would you use to calculate the mechanical energy (the sum of the gravitational potential energy and the kinetic energy)? If two springs are stretched different amounts by the same mass hung from them, which spring has the larger spring constant, the one that stretches most or the one that stretches least? Explain. Suppose that there is a significant air resistance in addition to the spring force acting on the...
A force ?(?) = −5.0?2+7.0? Newtons acts on a particle. a) How much work does the...
A force ?(?) = −5.0?2+7.0? Newtons acts on a particle. a) How much work does the force do on the particle as it moves from ? = 2.0m to ? = 5.0m, in Joules? b) Find the potential energy due to this force, at position x = 2, in Joules, by finding the potential energy as a function of x, U(x). You should use the reference point of the potential energy being 0 when x = 0. c) Using either...
4. The parts of this question are unrelated. a. i A proton in a nucleus can...
4. The parts of this question are unrelated. a. i A proton in a nucleus can be modelled as being in an infinite square well. i. If the proton has an energy of 8.18 × 10-18 J in its ground state, determine the length of the one-dimensional box that is containing the proton. ii. Sketch the proton’s standing wave pattern. b i. How much energy does a n = 4 hydrogen atom have? ii. Why is there no stationary state...
II(20pts). Short Problems a) The lowest energy of a particle in an infinite one-dimensional potential well...
II(20pts). Short Problems a) The lowest energy of a particle in an infinite one-dimensional potential well is 4.0 eV. If the width of the well is doubled, what is its lowest energy? b) Find the distance of closest approach of a 16.0-Mev alpha particle incident on a gold foil. c) The transition from the first excited state to the ground state in potassium results in the emission of a photon with  = 310 nm. If the potassium vapor is...
In this problem we are interested in the time-evolution of the states in the infinite square...
In this problem we are interested in the time-evolution of the states in the infinite square potential well. The time-independent stationary state wave functions are denoted as ψn(x) (n = 1, 2, . . .). (a) We know that the probability distribution for the particle in a stationary state is time-independent. Let us now prepare, at time t = 0, our system in a non-stationary state Ψ(x, 0) = (1/√( 2)) (ψ1(x) + ψ2(x)). Study the time-evolution of the probability...
Two boxes are stacked, with box B placed on top of box A. If box A...
Two boxes are stacked, with box B placed on top of box A. If box A is pushed such that both boxes move with a decreasing speed, is there any friction on either box? (a) Kinetic friction on box A and no friction on box B (b) Kinetic friction on box A and static friction on box B (c) Kinetic friction on box A and kinetic friction on box B (d) Static friction on box A and kinetic friction on...
8 through 10 done please!! 3.13.6 Question 110 pts A 319 kg motorcycle is parked in...
8 through 10 done please!! 3.13.6 Question 110 pts A 319 kg motorcycle is parked in a parking garage. If the car has 35,494 J of potential energy, how many meters above ground is the car? Report your answer to 1 decimal place. Please do not include units or the answer will be marked incorrect. Flag this Question Question 210 pts A box sitting on the top of a hill has 252 J of potential energy. If the hill is...
just do questions 5 through 10 3.13.6 Question 110 pts A 319 kg motorcycle is parked...
just do questions 5 through 10 3.13.6 Question 110 pts A 319 kg motorcycle is parked in a parking garage. If the car has 35,494 J of potential energy, how many meters above ground is the car? Report your answer to 1 decimal place. Please do not include units or the answer will be marked incorrect. Flag this Question Question 210 pts A box sitting on the top of a hill has 252 J of potential energy. If the hill...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT