Question

In the figure, a slab of mass m1 = 41 kg rests on a frictionless floor,...

In the figure, a slab of mass m1 = 41 kg rests on a frictionless floor, and a block of mass m2 = 11 kg rests on top of the slab. Between block and slab, the coefficient of static friction is 0.60, and the coefficient of kinetic friction is 0.40. A horizontal force   of magnitude 106 N begins to pull directly on the block, as shown. In unit-vector notation, what are the resulting accelerations of (a) the block and (b) the slab?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
In the figure, a slab of mass m1 = 40 kg rests on a frictionless floor,...
In the figure, a slab of mass m1 = 40 kg rests on a frictionless floor, and a block of mass m2 = 11 kg rests on top of the slab. Between block and slab, the coefficient of static friction is 0.60, and the coefficient of kinetic friction is 0.40. A horizontal force ModifyingAbove Upper F With right-arrow of magnitude 107 N begins to pull directly on the block, as shown. In unit-vector notation, what are the resulting accelerations of...
Constants (Figure 1)Block 1, of mass m1 = 0.600 kg , is connected over an ideal...
Constants (Figure 1)Block 1, of mass m1 = 0.600 kg , is connected over an ideal (massless and frictionless) pulley to block 2, of mass m2, as shown. For an angle of ? = 30.0 ? and a coefficient of kinetic friction between block 2 and the plane of ? = 0.400, an acceleration of magnitude a = 0.400 m/s2 is observed for block 2. Part A Find the mass of block 2, m2. Express your answer numerically in kilograms.
Objects with masses m1 = 12.0 kg and m2 = 8.0 kg are connected by a...
Objects with masses m1 = 12.0 kg and m2 = 8.0 kg are connected by a light string that passes over a frictionless pulley as in the figure below. If, when the system starts from rest, m2 falls 1.00 m in 1.48 s, determine the coefficient of kinetic friction between m1 and the table.    Express the friction force in terms of the coefficient of kinetic friction. Obtain an expression for the acceleration in terms of the masses and the...
A mass m1 = 5.2 kg rests on a frictionless table and connected by a massless...
A mass m1 = 5.2 kg rests on a frictionless table and connected by a massless string to another mass m2 = 5.2 kg. A force of magnitude F = 38 N pulls m1 to the left a distance d = 0.83 m. 1) How much work is done by the force F on the two block system? 2) How much work is done by the normal force on m1 and m2? 3) What is the final speed of the...
An object with mass m1 = 3.70 kg, rests on a frictionless horizontal table and is...
An object with mass m1 = 3.70 kg, rests on a frictionless horizontal table and is connected to a cable that passes over a pulley and is then fastened to a hanging object with mass m2 = 10.8 kg, as shown in the figure. Two objects labeled m1 and m2 are attached together by a cable. Object m1 lies on a horizontal table with the cable extending horizontally from its right side. The cable extends horizontally from the right side...
A mass m1 = 1 kg on a horizontal table is pulled by a string looped...
A mass m1 = 1 kg on a horizontal table is pulled by a string looped over a massless frictionless pulley and attached to another hanging mass m2. The coefficient of kinetic friction between the table and mass m1 is 0.5 and the coefficient of static friction is 0.6. a) What is the minimum mass m2 that will start both masses moving? b) What is the acceleration of the system with this minimum mass?
a large box whose mass is 20.0 kg rests on the frictionless floor. A mover pushes...
a large box whose mass is 20.0 kg rests on the frictionless floor. A mover pushes on the box with a force of 250 N at an angle 35.0 below the horizontal. Draw the box's free body diagram and calculate the acceleration of the box b) if the kinetic friction coefficient is 0.1 between the box and floor. Draw the box's free body diagram and re-calculate the acceleration of the box
7) A block of mass m1 = 38 kg on a horizontal surface is connected to...
7) A block of mass m1 = 38 kg on a horizontal surface is connected to a mass m2 = 21.6 kg that hangs vertically as shown in the figure below. The two blocks are connected by a string of negligible mass passing over a frictionless pulley. The coefficient of kinetic friction between m1 and the horizontal surface is 0.24. (a) What is the magnitude of the acceleration (in m/s2) of the hanging mass? Answer:    m/s2 (b) Determine the...
In the figure below, m1 = 3.2 kg, m2 = 5.3 kg, and the coefficient of...
In the figure below, m1 = 3.2 kg, m2 = 5.3 kg, and the coefficient of kinetic friction between the inclined plane and the 3.2-kg block is μk = 0.26. Find the magnitude of the acceleration of the masses and the tension in the cord. the ramp is 30 degrees m2 is hanging
Two blocks of mass m1 = 9.20 kg and m2 are connected by a light string....
Two blocks of mass m1 = 9.20 kg and m2 are connected by a light string. When a horizontal force F = 105 N is applied to m1 as shown in the figure below, the acceleration of the system is 3.20 m/s2 towards the left and the tension in the string connecting the two blocks is 62.0 N. The blocks are moving on a rough surface with an unknown coefficient of kinetic friction. Determine the coefficient of kinetic friction between...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT