Question

A spherical, non-conducting shell of inner radius r1 = 7 cm and outer radius r2= 16 cm carries a total charge Q = 18 nC distributed uniformly throughout the volume of the shell. What is the magnitude of the electric field at a distance r = 11 cm from the center of the shell? (k = 1/4πε0 = 8.99 × 109 N.m2/C2)

Answer #1

Thanks you.

Charge is distributed throughout a spherical shell of inner
radius r1 and outer radius r2 with a volume density given by ρ = ρ0
r1/r, where ρ0 is a constant. Determine the electric field due to
this charge as a function of r, the distance from the center of the
shell.
In this problem the volume charge density ρ is not uniform; it
is a function of r (distance from the center.)

Answer with a drawing please!
A nonconducting spherical shell of inner radius R1 and
outer radius R2 contains a uniform volume charge density
ρ throughout the shell. Derive he magnitude of the
electric field at the
following radial distances r from the center of the
sphere:
a) r<R1
b) R1<r<R2
c) r>R2

A spherical shell with inner radius r1 and outer radius r2 is
uniformly magnetized. Use Poisson’s relation to find the magnetic
field B inside the inner surface of the shell, outside the outer
surface of the shell and within the magnetized material of the
shell. Use SI units.

A spherical shell with inner radius r1 and outer radius r2 is
uniformly magnetized. Use Poisson’s relation to find the magnetic
field B inside the inner surface of the shell, outside the outer
surface of the shell and within the magnetized material of the
shell. Use SI units.

A spherical dielectric shell has inner radius r1,
outer radius r2, and dielectric constant k. A charge Q
is placed at the center of the sphere.
(a) Determine the polarization P in the dielectric shell.
(b) Find the bound volume charge density, ρb, inside
the dielectric shell.
(c) Find the bound surface charge density, σb, at r =
r1 and r = r2.

A conducting sphere is placed within a conducting spherical
shell. The conductors are in electrostatic equilibrium. As shown in
the image, the inner sphere has a radius of 1.50 cm, the inner
radius of the spherical shell is 2.25 cm, and the outer radius of
the shell is 2.75 cm. The inner sphere has a charge of 300 nC and
the spherical shell has zero net charge. Take the value of
k as 8.99 × 109
N·m2/C2.
13.
Determine the...

A small conducting spherical shell with inner radius
a and outer radius b is
concentric with a larger conducting spherical shell with inner
radius c and outer radius d. The
inner shell has a total charge of -1q and the
outer shell has a total charge of +3q.
Select True or False for the following statements.
True False The radial component of the electric field in the region
r > dis given by
+2q/(4πε0r2).
True False The total charge on...

A neutral hollow spherical conducting shell of inner radius 1.00
cm and outer radius 3.00 cm has a +2.00-µC point charge placed at
its center. Find the surface charge density how does the magnitude
of the charge and radius relate? How does a -2.00µC get involved in
this problem?

A small conducting spherical shell with inner radius
a and outer radius b is
concentric with a larger conducting spherical shell with inner
radius c and outer radius d. The
inner shell has a total charge of -2q and the
outer shell has a total charge of +4q
.

A conducting spherical shell of inner radius and outer radius
has a charge Q on it. The flux through a concentric spherical
surface of radius is . An additional charge, also Q, is then added
to the sphere. What is the change in flux through a concentric
spherical surface of radius when the additional charge is placed on
the conducting shell?

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 9 minutes ago

asked 22 minutes ago

asked 23 minutes ago

asked 23 minutes ago

asked 39 minutes ago

asked 42 minutes ago

asked 45 minutes ago

asked 45 minutes ago

asked 51 minutes ago

asked 59 minutes ago

asked 1 hour ago

asked 1 hour ago