Question

I have a laboratory experiment on Young's double slit interference. My instructor asked us how increasing...

I have a laboratory experiment on Young's double slit interference. My instructor asked us how increasing the distance effects and pattern of interference, and how decreasing slit width affects the pattern of interference. I know that if we increase the separation between the slits, we have more interference fringes produced.

What I do not know is how decreasing the slit width affects how many interference fringes are produced? I researched the topic and I', getting conflicting answers as some say it's an inverse relationship and others say it is not related. I know if we decrease the slit width, the diffraction pattern gets wider. Does that have an effect on interference fringes and if so, how?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
In a double-slit experiment, the slit separation d is 0.5 mm, and the slit width a...
In a double-slit experiment, the slit separation d is 0.5 mm, and the slit width a is 0.1 mm. Consider the interference of the light from the two slits and also the diffraction of the light through each slit. (a) How many bright interference fringes are within the central peak of the diffraction envelope? (b) How many bright fringes are within either of the first side peaks of the diffraction envelope?
A physics instructor wants to produce a double-slit interference pattern large enough for her class to...
A physics instructor wants to produce a double-slit interference pattern large enough for her class to see. For the size of the room, she decides that the distance between successive bright fringes on the screen should be at least 2.60 cm. If the slits have a separation d=0.0165mm, what is the minimum distance from the slits to the screen when 632.8-nm light from a He-Ne laser is used?
A physics instructor wants to produce a double-slit interference pattern large enough for her class to...
A physics instructor wants to produce a double-slit interference pattern large enough for her class to see. For the size of the room, she decides that the distance between successive bright fringes on the screen should be at least 2.40 cm. If the slits have a separation d=0.0175mm, what is the minimum distance from the slits to the screen when 632.8-nm light from a He-Ne laser is used?
A physics instructor wants to produce a double-slit interference pattern large enough for her class to...
A physics instructor wants to produce a double-slit interference pattern large enough for her class to see. For the size of the room, she decides that the distance between successive bright fringes on the screen should be at least 2.80 cm. If the slits have a separation d=0.0200mm, what is the minimum distance from the slits to the screen when 632.8-nm light from a He-Ne laser is used? Express your answer to three significant figures.
A physics instructor wants to produce a double-slit interference pattern large enough for her class to...
A physics instructor wants to produce a double-slit interference pattern large enough for her class to see. For the size of the room, she decides that the distance between successive bright fringes on the screen should be at least 3.00 cmcm. If the slits have a separation d=0.0155mmd=0.0155mm, what is the minimum distance from the slits to the screen when 632.8-nmnm light from a He-Ne laser is used? Express your answer to three significant figures. Units of cm
With a monochromatic light of wavelength ?? = 532 nm A double-slit interference pattern is produced...
With a monochromatic light of wavelength ?? = 532 nm A double-slit interference pattern is produced on a screen as shown in the picture. The slit separation ?? is 0.10 mm, and the slit–screen separation ?? is 50 cm. Assume that the angle θ (from the slit center to the maxima and minima) small enough to permit use of the approximations sin θ ≈ tan θ ≈ θ, in which θ is expressed in radian measure. a. A strip of...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT