Question

The elements in series RCL circuit are a 800 W resistor, a 600 mF capacitor, and...

  1. The elements in series RCL circuit are a 800 W resistor, a 600 mF capacitor, and a 200 mH inductor.  The frequency of the ac signal is 60 Hz.  If Vmax is 170 V, what is the voltage across the  (a) resistor (b) capacitor and (c) inductor?   What is the impedance of the circuit?  Calculate the current in the circuit. What is the resonance frequency of the circuit?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An L-R-C series circuit consists of a 60.0 Ω resistor, a 16.0 μF capacitor, a 4.00...
An L-R-C series circuit consists of a 60.0 Ω resistor, a 16.0 μF capacitor, a 4.00 mH inductor, and an ac voltage source of voltage amplitude 55.0 V operating at 1500 Hz . The current amplitude across the inductor, the resistor, and the capacitor is 0.814A...now, double the frequency and... a. Find new current amplitude across the inductor, the resistor, and the capacitor. b. Find new voltage amplitudes across the inductor, the resistor, and the capacitor.
A 108-V resistor, a 0.200-mF capacitor, and a 5.42-mH inductor are connected in series to a...
A 108-V resistor, a 0.200-mF capacitor, and a 5.42-mH inductor are connected in series to a generator whose voltage is 26.0 V. The current in the circuit is 0.141 A. Because of the shape of the current–frequency graph, there are two possible values for the frequency that corresponds to this current. Obtain these two values Answer: f1=7.5x10^3 Hz , f2 = 3.11 x 10^3
A series AC circuit contains a resistor, an inductor of 210 mH, a capacitor of 5.50...
A series AC circuit contains a resistor, an inductor of 210 mH, a capacitor of 5.50 µF, and a source with ΔVmax = 240 V operating at 50.0 Hz. The maximum current in the circuit is 200 mA. (a) Calculate the inductive reactance. Ω (b) Calculate the capacitive reactance. Ω (c) Calculate the impedance. kΩ (d) Calculate the resistance in the circuit. kΩ (e) Calculate the phase angle between the current and the source voltage. °
Consider an RLC circuit in series. In the circuit the AC source has an rms voltage...
Consider an RLC circuit in series. In the circuit the AC source has an rms voltage of 10 V and frequency of 25 kHz. The inductor is 0.50 mH, the capacitor is 0.10 μF, and resistor is 5.0 Ω. a) Determine the impedance b) Determine the voltage across the inductor, capacitor and resistor. c) Determine the phase angle. d) Is the voltage leading or lagging the current?
An RLC series circuit has a 1.00 kΩ resistor, a 168 mH inductor, and a 25.0...
An RLC series circuit has a 1.00 kΩ resistor, a 168 mH inductor, and a 25.0 nF capacitor. (a) Find the circuit's impedance at 491 Hz. ______ Ω (b) If the voltage source has Vrms = 408 V, what is Irms? ______ mA (c) What is the resonant frequency of the circuit? ______ kHz (d) What is Irms at resonance? ______ mA
An RLC series circuit has a 1.00 kΩ resistor, a 150 mH inductor, and a 25.0...
An RLC series circuit has a 1.00 kΩ resistor, a 150 mH inductor, and a 25.0 nF capacitor. a. Find the circuit's impedance (in Ohms) at 500 Hz. b. Find the circuit's impedance (in ohms) at 7.50 kHz. c. If the voltage source has Vrms = 408 V, what is Irms (in mA) at each frequency? mA at 500 Hz = ? mA at 7.5 Hz = ? d. What is the resonant frequency (in kHz) of the circuit? e....
An RLC series circuit has a 1.00 kΩ resistor, a 150 mH inductor, and a 25.0...
An RLC series circuit has a 1.00 kΩ resistor, a 150 mH inductor, and a 25.0 nF capacitor. a. Find the circuit's impedance (in Ohms) at 500 Hz. b. Find the circuit's impedance (in ohms) at 7.50 kHz. c. If the voltage source has Vrms = 408 V, what is Irms (in mA) at each frequency? mA at 500 Hz = ? mA at 7.5 Hz = ? d. What is the resonant frequency (in kHz) of the circuit? e....
An RLC series circuit has a 1.00 k? resistor, a 160 mH inductor, and a 25.0...
An RLC series circuit has a 1.00 k? resistor, a 160 mH inductor, and a 25.0 nF capacitor. (a) Find the circuit's impedance (in ?) at 515 Hz. (b) Find the circuit's impedance (in ?) at 7.50 kHz. (c) If the voltage source has Vrms = 408 V, what is Irms (in mA) at each frequency? mA (at 515 Hz) mA (at 7.50 kHz) (d) What is the resonant frequency (in kHz) of the circuit? kHz (e) What is Irms...
An L-R-C series circuit consists of a 60.0 Ω resistor, a 16.0 μF capacitor, a 4.00...
An L-R-C series circuit consists of a 60.0 Ω resistor, a 16.0 μF capacitor, a 4.00 mH inductor, and an ac voltage source of voltage amplitude 55.0 V operating at 1500 Hz . a. Find the current amplitude across the inductor, the resistor, and the capacitor. b. Find the voltage amplitudes across the inductor, the resistor, and the capacitor. Enter your answers numerically separated by commas. (VL, VR, VC) e. Find new current amplitude across the inductor, the resistor, and...
A 10 .0 Ω resistor, 10.0 mH inductor, and a 10.0μF capacitor are connected in series...
A 10 .0 Ω resistor, 10.0 mH inductor, and a 10.0μF capacitor are connected in series with a 10.0 kHz voltage source. The current through the circuit is 0.20 A. Find the voltage drop across each of the 3 elements. What is the resonance frequency of this circuit? Is the voltage lagging or leading the current in this circuit?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT