Question

A singly charged positive ion, with a mass of 5.45 x 10-27kg is traveling at 4.7x106...

A singly charged positive ion, with a mass of 5.45 x 10-27kg is traveling at 4.7x106 m/s straight through a chamber with an electric field of 1500V, pointed downward.

a. What is the magnetic field B1? (This is a vector)

b. After going through the velocity selector (above) it enters a second magnetic field and travels in a circle of 0.15m. What is the magnetic field B2? (also a vector)

Homework Answers

Answer #1

if you have any doubt related to the answer please let me know in comments. Give a thumbs up if you like the answer.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A singly charged positive ion has a mass of 2.46 ✕ 10−26 kg. After being accelerated...
A singly charged positive ion has a mass of 2.46 ✕ 10−26 kg. After being accelerated through a potential difference of 262 V, the ion enters a magnetic field of 0.425 T, in a direction perpendicular to the field. Calculate the radius of the path of the ion in the field. cm
A negatively charged particle (m=7x10^-27kg and q=-1.6x10^-19C) enters a velocity selector where the electric field is...
A negatively charged particle (m=7x10^-27kg and q=-1.6x10^-19C) enters a velocity selector where the electric field is upward and 12,000 V/m. The magnetic field has a magnitude of 5 milliTesla. 1.) What is the speed of the particle? 2.) What is the direction of the B1 field? 3.) If it enters a second magnetic field B2=0.4 Tesla, directed into the page, what is the radius of the path? Start from Fc=mv^2/r = Fe 4.) Does it bend clockwise or counterclockwise?
A singly charged 7Li ion has a mass of 1.16  10-26 kg. It is accelerated through a...
A singly charged 7Li ion has a mass of 1.16  10-26 kg. It is accelerated through a potential difference of 531 V and subsequently enters a uniform magnetic field of magnitude 0.366 T perpendicular to the ion's velocity. Find the radius of its path.
A singly charged 7Li ion has a mass of 1.16 10-26 kg. It is accelerated through...
A singly charged 7Li ion has a mass of 1.16 10-26 kg. It is accelerated through a potential difference of 485 V and subsequently enters a uniform magnetic field of magnitude 0.422 T perpendicular to the ion's velocity. Find the radius of its path.
Consider the mass spectrometer shown schematically in the figure below. The magnitude of the electric field...
Consider the mass spectrometer shown schematically in the figure below. The magnitude of the electric field between the plates of the velocity selector is 2.60  103 V/m, and the magnetic field in both the velocity selector and the deflection chamber has a magnitude of 0.0300 T. Calculate the radius of the path for a singly charged ion having a mass m = 2.48  10-26 kg
A singly charged ion (an ion that is missing one electron) with a velocity of 3120...
A singly charged ion (an ion that is missing one electron) with a velocity of 3120 m/s is injected perpendicular to a 0.217 T magnetic field, and the ion moves in a circle of 21.1 mm radius. What is the molar mass of the ion in grams? (If you use the standard units, you will get a mass of the ion in kilograms. You must convert that to grams. To get molar mass, you must multiply the mass of the...
A point charge with a mass of 2.5x10-12 kg and a charge of 6.8 C travels...
A point charge with a mass of 2.5x10-12 kg and a charge of 6.8 C travels straight through a velocity selector with crossed electric and magnetic fields. The magnetic field has a strength of .44 T. The charge then enters an area with just the magnetic field, and follows a path with a radius of curvature of 2 mm. What was the electric field of the velocity selector?
A mass spectrometer is a device for separating particles of different masses from a mixture. For...
A mass spectrometer is a device for separating particles of different masses from a mixture. For example, the technology is used to investigate qualitative and quantitative changes within thousands of biologically active components such as proteins, lipids and metabolites. A mass spectrometer consists of three sections: The accelerator The velocity selector The magnetic chamber (1) Accelerator (acc): In the accelerator, there is only an uniform Electric field due to a potential difference Vacc across two vertical plates separated from a...
A mass spectrometer is a device for separating particles of different masses from a mixture. For...
A mass spectrometer is a device for separating particles of different masses from a mixture. For example, the technology is used to investigate qualitative and quantitative changes within thousands of biologically active components such as proteins, lipids and metabolites. A mass spectrometer consists of three sections: The accelerator The velocity selector The magnetic chamber (1) Accelerator (acc): In the accelerator, there is only an uniform Electric field due to a potential difference Vacc across two vertical plates separated from a...
Consider the mass spectrometer shown schematically in the figure below. The magnitude of the electric field...
Consider the mass spectrometer shown schematically in the figure below. The magnitude of the electric field between the plates of the velocity selector is  2.40 * 10 3  V/m, and the magnetic field in both the velocity selector and the deflection chamber has a magnitude of 0.0400 T. Calculate the radius of the path for a singly charged ion having a mass m= 6.34  * 10 -26 kg. a. 0.718 b. 0.236 c. None of the given answers d. 0.401 e. 0.594