Question

A 5.00-kg 5.00-kg block is sent up a ramp inclined at an angle ?= 25.0 ∘...

A 5.00-kg 5.00-kg block is sent up a ramp inclined at an angle ?= 25.0 ∘ θ=25.0∘ from the horizontal. It is given an initial velocity ? 0 =15.0 m/s v0=15.0 m/s up the ramp. Between the block and the ramp, the coefficient of kinetic friction is ? k =0.50 μk=0.50 and the coefficient of static friction is ? s =0.60. μs=0.60. What distance ? D along the ramp's surface does the block travel before it comes to a stop?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 5.00-kg5.00-kg block is sent up a ramp inclined at an angle ?=28.0∘θ=28.0∘ from the horizontal....
A 5.00-kg5.00-kg block is sent up a ramp inclined at an angle ?=28.0∘θ=28.0∘ from the horizontal. It is given an initial velocity ?0=15.0 m/sv0=15.0 m/s up the ramp. Between the block and the ramp, the coefficient of kinetic friction is ?k=0.50μk=0.50 and the coefficient of static friction is ?s=0.60.μs=0.60. What distance ?D along the ramp's surface does the block travel before it comes to a stop?
There is a variable amount of friction between a block of mass m and a ramp...
There is a variable amount of friction between a block of mass m and a ramp at an angle θ above the horizontal. The kinetic and static coefficients of friction are equal but vary as µ=Ax, where x is measured along the ramp and x = 0 is the bottom of the ramp. The block is sent up the ramp with an initial speed v0, and comes to a stop somewhere on the ramp. In the following parts, take your...
A 2 kg block is pushed up a 60 degree inclined with an initial velocity of...
A 2 kg block is pushed up a 60 degree inclined with an initial velocity of 4 m/s on a surface whose coefficient of friction is 0.1. How far does the block travel up the incline when it comes to a complete stop?
A block is at rest on an inclined plane whose elevation can be varied. The coefficient...
A block is at rest on an inclined plane whose elevation can be varied. The coefficient of static friction is μs= 0.36, and the coefficient of kinetic friction is μk = 0.16. The angle of elevation θ is increased slowly from the horizontal. At what value of θ does the block begin to slide (in degrees)? What is the acceleration of the block?
In the figure, a 5.40 kg block is sent sliding up a plane inclined at θ...
In the figure, a 5.40 kg block is sent sliding up a plane inclined at θ = 37.0° while a horizontal force   of magnitude 50.0 N acts on it. The coefficient of kinetic friction between block and plane is 0.330. What are the (a) magnitude and (b) direction (up or down the plane) of the block's acceleration? The block's initial speed is 4.30 m/s. (c) How far up the plane does the block go? (d) When it reaches its highest...
A 2.0 kg wood block is launched up a wooden ramp that is inclined at a...
A 2.0 kg wood block is launched up a wooden ramp that is inclined at a 35 ∘ angle. The block’s initial speed is 10 m/s . The coefficient of kinetic friction between the block and the ramp is μk = 0.20. What vertical height does the block reach above its starting point? Part A What vertical height does the block reach above its starting point? Express your answer using two significant figures. y = 99   m   SubmitPrevious AnswersRequest Answer...
A 10 kg block is launched up a plane inclined at a 15° angle. The initial...
A 10 kg block is launched up a plane inclined at a 15° angle. The initial speed of the block is 5 m/s. a) Using Newton's laws of motion and the equations of kinematics, calculate how far up the inclined plane does the block slide in the absence of friction? b) Using work and energy, answer the question in part (a) in the presence of friction, taking the coefficient of kinetic friction between the block and the surface to be...
An 8.70-kg block slides with an initial speed of 1.80 m/s down a ramp inclined at...
An 8.70-kg block slides with an initial speed of 1.80 m/s down a ramp inclined at an angle of 25.3 ∘ with the horizontal. The coefficient of kinetic friction between the block and the ramp is 0.87. Use energy conservation to find the distance the block slides before coming to rest.
A block of mass m1 begins at the bottom of a ramp that is inclined an...
A block of mass m1 begins at the bottom of a ramp that is inclined an angle θ above the horizontal. It is initially moving up the ramp with velocity v0. A second block of mass m2 is at rest on the ramp a distance d up the ramp from the first block. Friction keeps the second block from sliding down. The coefficient of kinetic friction between the ramp and the blocks is µk for both blocks. What is the...
A 1.2-kg block, travelling at 14.2-m/s, encounters a ramp with a coefficient of kinetic friction of...
A 1.2-kg block, travelling at 14.2-m/s, encounters a ramp with a coefficient of kinetic friction of 0.15. The ramp is tilted 31° above the horizontal. Use work and energy arguments to answer the following. How far along the ramp does the block travel? Assume the coefficient of static friction is very small and the block slides back down the ramp. What is its speed at the bottom?