Question

What mass of water at 23.0°C must be allowed to come to thermal equilibrium with a...

What mass of water at 23.0°C must be allowed to come to thermal equilibrium with a 1.80-kg cube of aluminum initially at 150°C to lower the temperature of the aluminum to 61.0°C? Assume any water turned to steam subsequently recondenses.
Your response is off by a multiple of ten. kg

My answer was 906.40 kg and I got it wrong

Homework Answers

Answer #1

Using energy conservation:

Energy released by aluminum = energy gained by water

Q1 = Q2

ma*Ca*dT1 = mw*Cw*dT

ma = mass of aluminum = 1.80 kg

mw = mass of water = ?

dT1 = 150 - 61 = 89 C

dT2 = 61 - 23 = 38 C

Ca = heat capacity of aluminum = 900 J/kg-C

Cw = heat capacity of water = 4186 J/kg-C

So,

mw = ma*Ca*dT1/(Cw*dT2)

mw = 1.80*900*89/(4186*38)

mw = 0.906 kg = 906 gm

Please Upvote.

See that your units of final answer are wrong. Either use 0.906 kg OR 906 gm

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
What mass of water at 23.0 °C must be allowed to come to thermal equilibrium with...
What mass of water at 23.0 °C must be allowed to come to thermal equilibrium with a 1.58-kg cube of aluminum initially at 1.50 ✕ 102 °C to lower the temperature of the aluminum to 76.2 °C? Assume any water turned to stream subsequently recondenses. kg.
A sample of copper with a mass of 1.80 kg, initially at a temperature of 150.0°C,...
A sample of copper with a mass of 1.80 kg, initially at a temperature of 150.0°C, is in a well-insulated container. Water at a temperature of 27.0°C is added to the container, and the entire interior of the container is allowed to come to thermal equilibrium, where it reaches a final temperature of 70.0°C. What mass of water (in kg) was added? Assume any water turned to steam subsequently recondenses.
A 23.0 g copper ring at 0.000°C has an inner diameter of D = 2.46000 cm....
A 23.0 g copper ring at 0.000°C has an inner diameter of D = 2.46000 cm. An aluminum sphere at 100.0°C has a diameter of d = 2.46507 cm. The sphere is put on top of the ring, and the two are allowed to come to thermal equilibrium, with no heat lost to the surroundings. The sphere just passes through the ring at equilibrium temperature. What is the mass of the sphere?
A 23.0 g copper ring at 0.000°C has an inner diameter of D = 2.46000 cm....
A 23.0 g copper ring at 0.000°C has an inner diameter of D = 2.46000 cm. An aluminum sphere at 100.0°C has a diameter of d = 2.46507 cm. The sphere is put on top of the ring, and the two are allowed to come to thermal equilibrium, with no heat lost to the surroundings. The sphere just passes through the ring at equilibrium temperature. What is the mass of the sphere?
A 23.0 g copper ring at 0.000°C has an inner diameter of D = 2.46000 cm....
A 23.0 g copper ring at 0.000°C has an inner diameter of D = 2.46000 cm. An aluminum sphere at 100.0°C has a diameter of d = 2.46507 cm. The sphere is put on top of the ring, and the two are allowed to come to thermal equilibrium, with no heat lost to the surroundings. The sphere just passes through the ring at equilibrium temperature. What is the mass of the sphere?
A 27.0 −g aluminum block is warmed to 65.6 ∘C and plunged into an insulated beaker...
A 27.0 −g aluminum block is warmed to 65.6 ∘C and plunged into an insulated beaker containing 55.1 g water initially at 22.4 ∘C. The aluminum and the water are allowed to come to thermal equilibrium. Assuming that no heat is lost, what is the final temperature of the water and aluminum?
Some stainless steel implements, in a well insulated container, are brought into thermal equilibrium with 100...
Some stainless steel implements, in a well insulated container, are brought into thermal equilibrium with 100 g of steam (water vapour). Initially the steam was at a temperature of 1000C and the implements were at a temperature of 10oC. Lv (water) = 2256 kJ kg-1; Cwater = 4.19 kJ kg-1 K-1; C stainless-steel = 0.9 kJ kg-1 K-1 Question: Which ONE of the following statements transforming 100 g of steam at 1000C into 100 g of water at 1000C is...
A 0.5970-kg ice cube at -12.40°C is placed inside a chamber of steam at 365.0°C. Later,...
A 0.5970-kg ice cube at -12.40°C is placed inside a chamber of steam at 365.0°C. Later, you notice that the ice cube has completely melted into a puddle of water. If the chamber initially contained 6.430 moles of steam (water) molecules before the ice is added, calculate the final temperature of the puddle once it settled to equilibrium. (Assume the chamber walls are sufficiently flexible to allow the system to remain isobaric and consider thermal losses/gains from the chamber walls...
A 35.0-g cube of ice, initially at 0.0°C, is dropped into 180.0 g of water in...
A 35.0-g cube of ice, initially at 0.0°C, is dropped into 180.0 g of water in an 70.0-g aluminum container, both initially at 35.0°C. What is the final equilibrium temperature? (Specific heat for aluminum is 900 J/kg⋅°C, the specific heat of water is 4 186 J/kg⋅°C, and Lf = 3.33 × 105 J/kg.) 26.4 °C 17.6 °C 8.79 °C 35.1 °C 30.8 ° C
An unknown substance has a mass of 0.125 kg and an initial temperature of 79.8°C. The...
An unknown substance has a mass of 0.125 kg and an initial temperature of 79.8°C. The substance is then dropped into a calorimeter made of aluminum containing 0.285 kg of water initially at 21.0°C. The mass of the aluminum container is 0.150 kg, and the temperature of the calorimeter increases to a final equilibrium temperature of 32.0°C. Assuming no thermal energy is transferred to the environment, calculate the specific heat of the unknown substance.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT