Question

why is it harder for an ice skater to spin with his arms stuck out, as...

why is it harder for an ice skater to spin with his arms stuck out, as opposed to tucked in?

Homework Answers

Answer #1

when a When a figure skater draws her arms and a leg inward, she reduces the distance between the axis of rotation and some of her mass, reducing her moment of inertia. Since angular momentum is conserved, her rotational velocity must increase to compensate.

Now when her arms and a leg are out, they are further from her rotation axis. If her arms are straight out they have moment of inertia ½(2marm)r²arm, where rarm is the distance from the axis to her fingertips. If her leg is straight out, it contributes ½mlegleg. the skater's moment of inertia is much larger when her arms and one leg are out, all due to the r² dependence of I.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
When a figure skater goes into spin she will begin with her arms extended, and then...
When a figure skater goes into spin she will begin with her arms extended, and then draws her arms inward. As a result the ice skater spins faster. Describe why this works in terms of angular momentum. Provide your own example of the conservation of linear momentum in a collision. Use the words elastic, inelastic, and totally inelastic in your explanation.
An ice skater is preparing for a jump with turns and has his arms extended. His...
An ice skater is preparing for a jump with turns and has his arms extended. His moment of inertia is 2.1 kg · m2 while his arms are extended, and he is spinning at 0.6 rev/s. If he launches himself into the air at 8.9 m/s at an angle of 45° with respect to the ice, how many revolutions can he execute while airborne if his moment of inertia in the air is 0.7 kg · m2?
The outstretched hands and arms of a figure skater preparing for a spin can be considered...
The outstretched hands and arms of a figure skater preparing for a spin can be considered a slender rod pivoting about an axis through its center (Figure 1). When his hands and arms are brought in and wrapped around his body to execute the spin, the hands and arms can be considered a thin-walled hollow cylinder. His hands and arms have a combined mass 9.0 kg . When outstretched, they span 1.6 m ; when wrapped, they form a cylinder...
The outstretched hands and arms of a figure skater preparing for a spin can be considered...
The outstretched hands and arms of a figure skater preparing for a spin can be considered a slender rod pivoting about an axis through its center (Figure 1). When his hands and arms are brought in and wrapped around his body to execute the spin, the hands and arms can be considered a thin-walled hollow cylinder. His hands and arms have a combined mass 8.0 kg . When outstretched, they span 1.7 m ; when wrapped, they form a thin-walled...
The outstretched hands and arms of a figure skater preparing for a spin can be considered...
The outstretched hands and arms of a figure skater preparing for a spin can be considered a slender rod pivoting about an axis through its center. (See the figure below (Figure 1).) When the skater's hands and arms are brought in and wrapped around his body to execute the spin, the hands and arms can be considered a thin-walled hollow cylinder. His hands and arms have a combined mass of 7.5 kgkg . When outstretched, they span 1.8 mm ;...
A skater is spinning on the ice and extends her arms out straight. Discuss the effect...
A skater is spinning on the ice and extends her arms out straight. Discuss the effect this will have on her moment of inertia, her angular momentum, and her angular velocity. Will each increase, decrease, or stay the same? Explain. Please be specific?
An ice skater quickly extends his arms when he turns on himself. Will its kinetic energy...
An ice skater quickly extends his arms when he turns on himself. Will its kinetic energy be conserved? Will your mechanical energy be conserved? Will its angular momentum be conserved? (Disregard the friction in the time interval that two it takes to extend the arms.) If any of these magnitudes is not preserved tell whether it increases or decreases.
A 65-kgkg ice skater stands facing a wall with his arms bent and then pushes away...
A 65-kgkg ice skater stands facing a wall with his arms bent and then pushes away from the wall by straightening his arms. At the instant at which his fingers lose contact with the wall, his center of mass has moved 0.55 mm , and at this instant he is traveling at 4.0 m/sm/s .\ 1). What is the average force exerted by the wall on him? 2). What is the work done by the wall on him?\ 3). What...
An ice-skater starts to spin while standing upright with her arms fully extended outward. In each...
An ice-skater starts to spin while standing upright with her arms fully extended outward. In each of her hands she holds a 1.0-kg dumbbell. Model her body as a 50-kg, 0.20-m–radius cylinder, her arms as uniform 2.0-kg, 0.75-m–long, 0.10-m diameter rods, and the dumbells as point masses. She then draws her arms downward, until they are by her sides, 0.20 m from her axis of rotation. (a) What is her initial moment of inertia? (b) What is her final moment...
A figure skater is spinning slowly with arms outstretched. He brings his arms in close to...
A figure skater is spinning slowly with arms outstretched. He brings his arms in close to his body and his angular velocity changes by a factor of 2. By what factor does his moment of inertia change, and why?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT