Question

If an ideal gas starts out at a pressure of 103 kPa and a volume of...

If an ideal gas starts out at a pressure of 103 kPa and a volume of 0.0330 m3 and then ends at a pressure of 248 kPa and volume of 0.0890 m3, how much work is done if it follows an isochoric process up to the final pressure, then an isobaric expansion to the final volume?

If instead it had an isobaric expansion to the final volume, followed by an isochoric process to the final pressure, how much work is done?

Homework Answers

Answer #1

(a)

When gas follows an isochoric process up to the final pressure, then an isobaric expansion to the final volume,

Work done = Wisochoric + Wisobaric

We know that in isochoric process volume is constant. so, work done is 0.

W = 0 + PfV

W = 248 * (0.089 - 0.033)

W = 13.88 kJ

(b)

When gas follows an isobaric expansion to the final volume, followed by an isochoric process to the final pressure,

W =  Wisobaric +  Wisochoric

W = PiV + 0

W = 103 * (0.089 - 0.033)

W = 5.768 kJ

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Five moles of monatomic ideal gas have initial pressure 2.50 × 103 Pa and initial volume...
Five moles of monatomic ideal gas have initial pressure 2.50 × 103 Pa and initial volume 2.10 m3. While undergoing an adiabatic expansion, the gas does 1180 J of work.​ What is the final pressure of the gas after the expansion?​ in kPa
With the pressure held constant at 250 kPa , 47 mol of a monatomic ideal gas...
With the pressure held constant at 250 kPa , 47 mol of a monatomic ideal gas expands from an initial volume of 0.70 m3 to a final volume of 1.9 m3 . a) How much work was done by the gas during the expansion? b) What were the initial temperature of the gas? c) What were the final temperature of the gas? d) What was the change in the internal energy of the gas? e) How much heat was added...
An ideal gas initially at 350 K undergoes an isobaric expansion at 2.50 kPa. The volume...
An ideal gas initially at 350 K undergoes an isobaric expansion at 2.50 kPa. The volume increases from 1.00 m3 to 3.00 m3 and 13.0 kJ is transferred to the gas by heat. (a) What is the change in internal energy of the gas? kJ (b) What is the final temperature of the gas?
A flask contains 90.7 moles of a monatomic ideal gas at pressure 5.64 atm and volume...
A flask contains 90.7 moles of a monatomic ideal gas at pressure 5.64 atm and volume 40.1 liters (point A on the graph. Now, the gas undergoes a cycle of three steps: - First there is an isothermal expansion to pressure 3.79 atm (point B on the graph). - Next, there is an isochoric process in which the pressure is raised to P1 (point C on the graph). - Finally, there is an isobaric compression back to the original state...
3.0 moles of an ideal gas are subjected to the following processes. First the volume is...
3.0 moles of an ideal gas are subjected to the following processes. First the volume is tripled in an isobaric process. Then it undergoes an isothermal process to a pressure of 9.0 kPa. The volume is then cut in half in another isobaric process after being tripled. Finally, it returns to the original state in an isochoric process. (a) Draw a PV diagram of the cycle. Label each state (vertex) with a letter (A, B, …) and each transition with...
A 0.520-mol sample of an ideal diatomic gas at 432 kPa and 324 K expands quasi-statically...
A 0.520-mol sample of an ideal diatomic gas at 432 kPa and 324 K expands quasi-statically until the pressure decreases to 144 kPa. Find the final temperature and volume of the gas, the work done by the gas, and the heat absorbed by the gas if the expansion is the following. a) isothermal and adiabatic final temperature volume of the gas wrok done by the gas heat absorbed? K=?, L=?, work done?, heat absorb?
3 moles of an ideal gas is originally at a pressure of 100,000 Pa at 128oC....
3 moles of an ideal gas is originally at a pressure of 100,000 Pa at 128oC. The pressure is increased to 150000 Pa via an isovolumetric process. Then the gas is compressed via an isobaric process to a volume of .04 m3. a. Draw the PV curve precisely for this process. Calculate the endpoints. Be sure to indicate direction. b. Find the work done on the gas.
A flask contains 99 moles of a monatomic ideal gas at pressure 6.79 atm and volume...
A flask contains 99 moles of a monatomic ideal gas at pressure 6.79 atm and volume 29.3 liters (point A on the graph. Now, the gas undergoes a cycle of three steps: - First there is an isothermal expansion to pressure 3.71 atm (point B on the graph). - Next, there is an isochoric process in which the pressure is raised to P1 (point C on the graph). - Finally, there is an isobaric compression back to the original state...
A 0.505-mol sample of an ideal diatomic gas at 408 kPa and 309 K expands quasi-statically...
A 0.505-mol sample of an ideal diatomic gas at 408 kPa and 309 K expands quasi-statically until the pressure decreases to 150 kPa. Find the final temperature and volume of the gas, the work done by the gas, and the heat absorbed by the gas if the expansion is the following. (a) isothermal final temperature K volume of the gas L work done by the gas J heat absorbed J (b) adiabatic final temperature K volume of the gas L...
A quantity of ideal gas at 12°C and 54 kPa occupies a volume of 7.8 m3....
A quantity of ideal gas at 12°C and 54 kPa occupies a volume of 7.8 m3. (a) How many moles of the gas are present? (b) If the pressure is now raised to 270 kPa and the temperature is raised to 40.0°C, how much volume does the gas occupy? Assume no leaks.