Question

a real inverted image I of an object O is formed by a certain lens (not...

a real inverted image I of an object O is formed by a certain lens (not shown); the object-image separation is d = 31.4 cm, measured along the central axis of the lens. The image is just half the size of the object.​ How far from the object must the lens be placed?​ What is the focal length of the lens?​

Homework Answers

Answer #1

To produce this type of image lens Should be convex.

Now given that magnification is 0.5

M = -v/u = -0.5 (negative since image is inverted and real)

Where u = object distance from lens

v = image distance from lens

Now Also given that

d = v + u = 31.4 cm

where -v/u = -0.5

v = 0.5*u

So,

0.5*u + u = 31.4 cm

1.5*u = 31.4 cm

u = 31.4/1.5 = 20.9 cm

Object distance, u = 20.9 cm

Image distance = 0.5*u = 0.5*20.9 = 10.5 cm

Now Using Lens equation

1/f = 1/u + 1/v

f = v*u/(v + u)

f = 20.9*10.5/(20.9 + 10.5)

f = 6.99 cm = focal length of lens

Please Upvote.

Comment below if you have any doubt.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A real image is formed by a particular lens. The separation between the object and the...
A real image is formed by a particular lens. The separation between the object and the image is 36 cm, measured along the principal axis. The image is just half the size of the object. What kind of the lens must be used to produce this image? How far the object is placed from the lens? What is the focal length? Use the graphical method to illustrate the principle of the image formation.
An object is placed to the left of a lens, and a real image is formed...
An object is placed to the left of a lens, and a real image is formed to the right of the lens. The image is inverted relative to the object and is one-half the size of the object. The distance between the object and the image is 75.3 cm. how far from the lens is the object? what is the focal length of the lens?
An object is placed to the left of a lens, and a real image is formed...
An object is placed to the left of a lens, and a real image is formed to the right of the lens. The image is inverted relative to the object and is one-half the size of the object. The distance between the object and the image is 117 cm. (a) How far from the lens is the object? (b) What is the focal length of the lens?
An object is placed to the left of a lens, and a real image is formed...
An object is placed to the left of a lens, and a real image is formed to the right of the lens. The image is inverted relative to the object and is one-half the size of the object. The distance between the object and the image is 66 cm. (a) How far from the lens is the object? (b) What is the focal length of the lens?
Because a concave lens cannot form a real image of a real object, it is difficult...
Because a concave lens cannot form a real image of a real object, it is difficult to measure its focal length precisely. One method uses a second, convex, lens to produce a virtual object for the concave lens. Under the proper conditions, the concave lens will form a real image of the virtual object! A student conducting a laboratory project on concave lenses makes the following observations: When a lamp is placed 42.7 cm to the left of a particular...
A diverging lens with a focal length of -19.7 cm and a converging lens with a...
A diverging lens with a focal length of -19.7 cm and a converging lens with a focal length of 11.0 cm have a common central axis. Their separation is 39.5 cm. An object of height 1.1 cm is 26.4 cm in front of the diverging lens, on the common central axis. Find the location of the final image produced by the combination of the two lenses. Where is the image located as measured from the converging lens? What is the...
An object is placed in front of a converging lens (convex lens) with a radius of...
An object is placed in front of a converging lens (convex lens) with a radius of curvature of 4.88 cm and focal length of 2.44 cm. An image is formed the object. (a) Calculate how far is the lens from the object if the image is real. (b) How far is image from the lens? (c) is the image upright or inverted, and is the image magnified or diminished? (d) Draw the ray diagram to confirm your result prediction.
A diverging lens with a focal length of -15 cm and a converging lens with a...
A diverging lens with a focal length of -15 cm and a converging lens with a focal length of 15 cm have a common central axis. Their separation is 12 cm. An object of height 1.0 cm is 10 cm in front of the diverging lens, on the common central axis. (a) Where does the lens combination produce the final image of the object (the one produced by the second, converging lens)? in cm (b) What is the height of...
Consider a converging lens whose focal length is 5.47 cm. An object is placed on the...
Consider a converging lens whose focal length is 5.47 cm. An object is placed on the axis of the lens at a distance of 11.7 cm from the lens. 1. How far is the object's image from the lens? In centimeters. 2. If it can be determined, is the image real or virtual? virtual real cannot be determined 3. If it can be determined, is the image upright or inverted with respect to the object? inverted upright cannot be determined
An object is placed 78.1 cm in front of a diverging lens with a focal length...
An object is placed 78.1 cm in front of a diverging lens with a focal length of magnitude 37.3 cm. A converging lens having a focal length of magnitude 27.49 cm is placed 105.3 cm past the first lens. Where is the final image formed. Is this image Real or Virtual. Inverted or Non-Inverted? Also calculate the magnification.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT