Question

a. Traveling up the incline, the work done on the block by friction is b. What is...

a. Traveling up the incline, the work done on the block by friction is

b. What is the block’s velocity when it has traveled a distance D=1 meter up the incline?

c. If mass m1 is cut in half, speed of the block when it has traveled D=1 meter up the incline
   a.stays the same
   b. increases
   c. decreases

Homework Answers

Answer #1

a) Traveling up the incline, the work done on the block by friction is

W = -μkmgDcosθ

where μk = Coefficient of friction, D = Distance travelled, θ = Angle of inclined plane

b) As the block moves up the inclined plane, there are two forces that cause it to decelerate. These forces are the component of its weight that is parallel to the inclined plane and the friction force.

Force parallel = mg*sinθ
Ff = μk*mg*cosθ
Total force = mg*sinθ + μk*mg*cosθ

To determine the rate at which the velocity is decreasing, divide this force by the block’s mass.

a = g*sinθ + μk*g*cosθ  

To determine the block’s velocity after moving 1 meter up the incline, use the following equation.

vf^2 = vi^2 + 2 * a * d
vf^2 = vi^2 + 2*-(g*sinθ + μk*g*cosθ)*1
vf^2 = vi^2 + 2*- g*sinθ - μk*g*cosθ
vf = √(vi^2 - 2g*sinθ - 2μk*g*cosθ)

c) As velocity is independent of mass so it will remain same.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A mass m = 12 kg is pulled along a horizontal floor with NO friction for...
A mass m = 12 kg is pulled along a horizontal floor with NO friction for a distance d =7.2 m. Then the mass is pulled up an incline that makes an angle θ = 30° with the horizontal and has a coefficient of kinetic friction μk = 0.49. The entire time the massless rope used to pull the block is pulled parallel to the incline at an angle of θ = 30° (thus on the incline it is parallel...
A mass m = 12 kg is pulled along a horizontal floor with NO friction for...
A mass m = 12 kg is pulled along a horizontal floor with NO friction for a distance d =7.2 m. Then the mass is pulled up an incline that makes an angle θ = 30° with the horizontal and has a coefficient of kinetic friction μk = 0.49. The entire time the massless rope used to pull the block is pulled parallel to the incline at an angle of θ = 30° (thus on the incline it is parallel...
The initial speed of a 2.58-kg box traveling up a plane inclined 37° to the horizontal...
The initial speed of a 2.58-kg box traveling up a plane inclined 37° to the horizontal is 4.55 m/s. The coefficient of kinetic friction between the box and the plane is 0.30. (a) How far along the incline does the box travel before coming to a stop? ---m (b) What is its speed when it has traveled half the distance found in Part (a)? ---m/s
A 2.5kg wooden block is held by a support on the surface of a frictionless incline....
A 2.5kg wooden block is held by a support on the surface of a frictionless incline. A 20g bullet is shot at the block from below, in a direction parallel to the incline, at a speed of 550m/s. (a) Calculate the velocity of the center of mass of the two bodies before the collision. (b) If the bullet lodges into the block, find the block’s velocity immediately after the collision. (c) At what maximum height (measured from the initial position)...
1. A block of mass is pulled up an incline. F= 34 N, mass= 6kg and...
1. A block of mass is pulled up an incline. F= 34 N, mass= 6kg and angle= 24 ˚. What is the acceleration of the block if the coefficient of kinetic friction between the block and incline is 0.12. 2. A 4.0Kg block slides down a 37° incline at a constant speed. 16N force is applied up and parallel to the incline. What is the coefficient of kinetic friction between the block and the surface of the incline?
A 13.2kg block is on a ramp, with an incline of θ (a) If the ramp...
A 13.2kg block is on a ramp, with an incline of θ (a) If the ramp is frictionless what is the magnitude of the acceleration of the block down the ramp? (b) If the ramp has a coefficient of static friction of µs = 0.3, at what angle θ will the block start to move? Imagine like the friction lab, you slowly increase the incline of the ramp. (c) Does the angle found in b) depend on mass? (d) What...
A block of mass m is initially held at rest at point P on an incline...
A block of mass m is initially held at rest at point P on an incline that makes an angle q with respect to horizontal. The coefficient of kinetic friction between the block and the incline is mk. After the block slides down the incline from point P, it starts to slide without friction up a vertical circular track of radius R. When it reaches the top of the circle, the normal force (downward) by the track to the block...
A 4.25 kg block is projected at 5.40 m/s up a plane that is inclined at...
A 4.25 kg block is projected at 5.40 m/s up a plane that is inclined at 30.0° with the horizontal. The block slides some distance up the incline, stops turns around and slides back down to the bottom. When it reaches the bottom of the incline again, it is traveling with a speed of 3.80 m/s. If the coefficient of kinetic friction between the block and the plane is 0.500, how far up the incline did the block slide?
A block of mass 4.0Kg slides down an incline plane of length 10 meters that makes...
A block of mass 4.0Kg slides down an incline plane of length 10 meters that makes an angle of 30 degrees with the horizontal. The coefficient of kinetic friction between the block and the incline is 0.3. If the block is has an initial speed of 2mis down the incline at the top of the incline, then what is the speed at the bottom? Show calculations. Indicate answer. In the previous problem, what was the gain in Kinetic Energy? Show...
A crate of mass 10.6 kg is pulled up a rough incline with an initial speed...
A crate of mass 10.6 kg is pulled up a rough incline with an initial speed of 1.52 m/s. The pulling force is 94 N parallel to the incline, which makes an angle of 20.2° with the horizontal. The coefficient of kinetic friction is 0.400, and the crate is pulled 4.94 m. (a) How much work is done by the gravitational force on the crate? (b) Determine the increase in internal energy of the crate–incline system owing to friction. (c)...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT