Question

What is the maximum possible efficiency of a heat engine operating between a reservoir at 28.0°C...

What is the maximum possible efficiency of a heat engine operating between a reservoir at 28.0°C and one at 350°C? (Enter a number as a fraction or decimal.)

Answer should be eC= ?

Homework Answers

Answer #1

the maximum possible efficiency of a heat engine is possible if it is assumed to be a reversible heat engine so for a reversible heat engine the efficiency = work output /heat taken from the

source = Q1 -Q2/ Q1 = 1 - Q2/ Q1 = 1 - T2 / T1(here Q1 , T1 are the heat taken from and temperature of the source and Q2,T2 are the heat rejected to and temperature of the sink)

==> T source = 350 C = 350+273 K = 623 K

==> T sink = 28 C = 28+273 K =301 K

efficiency = 1 - 301/623 = 0.51685

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A heat engine operates between a reservoir at 28°C and one at 311°C. What is the...
A heat engine operates between a reservoir at 28°C and one at 311°C. What is the maximum efficiency possible for this engine?
A heat engine operating between 40°C and 450°C has 21 % of maximum possible efficiency. If...
A heat engine operating between 40°C and 450°C has 21 % of maximum possible efficiency. If its power output is 125 kW, at what rate does the engine absorb heat?
A heat engine operating between 30°C and 450°C has 23% of maximum possible efficiency. If its...
A heat engine operating between 30°C and 450°C has 23% of maximum possible efficiency. If its power output is 125kW, at what rate does the engine absorb heat?
A heat engine operating between 30°C and 450°C has 40% of maximum possible efficiency. If its...
A heat engine operating between 30°C and 450°C has 40% of maximum possible efficiency. If its power output is 125kW, at what rate does the engine absorb heat?
What is the maximum efficiency of a heat engine that operates between 440°C and 120°C? ____________________%...
What is the maximum efficiency of a heat engine that operates between 440°C and 120°C? ____________________% If this engine generates 2000 J of mechanical energy, how many calories does it absorb from the hot reservoir, and how many calories does it transfer into the cold reservoir? ___________________cal (hot reservoir) ________________________cal (cold reservoir)
The exhaust temperature of a heat engine is 290 ∘C∘C . What must be the high...
The exhaust temperature of a heat engine is 290 ∘C∘C . What must be the high temperature if the Carnot efficiency is to be 23 %% ? Express your answer using two significant figures. A heat engine uses a heat source at 500 ∘C∘C and has an ideal (Carnot) efficiency of 28 %% . To increase the ideal efficiency to 42 %% , what must be the temperature of the heat source? An ideal Carnot engine is operated between a...
Question 3) Which one of the following statements concerning the efficiency of a Carnot heat engine...
Question 3) Which one of the following statements concerning the efficiency of a Carnot heat engine is true? A) The efficiency of an irreversible engine is typically greater than that of a reversible engine operating under the same circumstances. B) The efficiency is dependent on whether an ideal or non-ideal gas is used. C) One hundred percent efficiency is possible if the engine can be operated in reverse. D) The efficiency is not dependent on the temperatures of the hot...
A heat engine that has maximum efficiency starts working by using 1 kg of water with...
A heat engine that has maximum efficiency starts working by using 1 kg of water with initial temperature Ti = 373K as a hot reservoir, and 1 kg of ice at T0 = 273K as its cold reservoir. As the engine goes through cycles, the water cools, and the ice melts. At some point, all of the ice will be melted. (a) What is the temperature of the water reservoir at that time? (b) What is the maximal amount of...
A Carnot engine of efficiency 43% operates with a cold reservoir at 28°C and exhausts 1210...
A Carnot engine of efficiency 43% operates with a cold reservoir at 28°C and exhausts 1210 J of heat each cycle. What is the entropy change for the hot reservoir?
We have a Carnot engine operating between a hot reservoir A and a cold reservoir B....
We have a Carnot engine operating between a hot reservoir A and a cold reservoir B. The work produced in the engine is used to power a flywheel. The hot reservoir is boiling water at p0 = 1 bar and Ta = 373K. The cold reservoir is a block of ice at p0 and Tb = 273K (latent heat = 3.3E5 J/kg). For the flywheel we know that Inertiamoment = 2kg m^2, mass = 6kg, c = 418J/kg K. Final...