Question

A
cart of mass 2.50 kg moving with a speed of 4.00 m/s collides
head-on with a 1.50 kg cart at rest. If the collision is elastic,
what will be the speed and direction of each cart after the
collision?

Answer #1

m1 = 2.5kg v1i = +4 m/s

m2 = 1.5 kg v2i = 0 m/s

we need v2f and v1f so

we need to apply momentum and energy collision becuase of collision is elastic

Pi =Pf

m1*v1i+m2*v2i = m1*v1f +m2*v2f

energy conservation

0.5m1*v1i^2+0.5*m2*v2i^2 = 0.5*m1*v1f^2 +0.5*m2*v2f^2

from these two

we got

**v1f = 1 m/s**

**v2f = 5 m/s**

**both have the same direction and moving in the same
direction in which initially cart of mass 2.5 kg was
moving**

let me know in a comment if there is any problem or doubts

A 2.50 kg mass moving 7.50 m/s to the right collides head on
with a 4.90 kg mass. After the collision the 2.50 kg mass is moving
5.00 m/s to the left and the 4.90 kg mass is moving 4.88 m/s to the
right.
a. Calculate the velocity of the 4.90 kg mass before the
collision
b. If the collision lasts for 0.0625 seconds calculate the force
that acted on each mass during the collision.

A 5.0-kg mass moving at 8.0 m/s collides head-on with a 3.0-kg
mass initially at rest If the collision is perfectly elastic, what
is the speed of the masses just after the collision? Is the kinetic
energy conserved?

A ball of mass 2.5 kg moving east with a speed of 4.2 m/sec
collides head-on with a 1 kg ball initially moving at 1.7 m/sec to
the west. If the collision is elastic, what will be the speed and
direction of each ball after the collision?

A ball of mass 0.440 kg moving east (+x direction) with a speed
of 3.60 m/s collides head-on with a 0.260 kg ball at rest. If the
collision is perfectly elastic, what will be the speed and
direction of each ball after the collision?

A ball of mass 0.484 kg moving east (+xdirection) with
a speed of 3.76 m/s collides head-on with a 0.242 kg ball at rest.
Assume that the collision is perfectly elastic.
A)What is be the speed of the 0.484-kg ball after
the collision? B)What is be the direction of the velocity of the
0.484-kg ball after the collision? C)What is the speed of the
0.242-kg ball after the collision? D)What is the direction of the
velocity of 0.242-kg ball after...

A railroad car of mass 2.50 ✕ 104 kg moving at 3.40
m/s collides and couples with two coupled railroad cars, each of
the same mass as the single car and moving in the same direction at
1.20 m/s.
(a) What is the speed of the three coupled cars after the
collision?
(b) How much kinetic energy is lost in the collision?

A 7.50 kg bowling ball moving at 4.00 m/s makes an elastic head
on collision with a 2.50 kg bowling pin initially at rest. Find the
velocity of the bowling pin after the collision.

A ball of mass 0.250 kg that is moving with a speed of 5.5 m/s
collides head-on and elastically with another ball initially at
rest. Immediately after the collision, the incoming ball bounces
backward with a speed of 3.1 m/s . Calculate the velocity of the
target ball after the collision. Calculate the mass of the target
ball.

A cart of mass m1 = 8.8 kg, moving on frictionless
surface with a speed of 2.5 m/s makes an elastic collision with a
cart of unknown mass m2 moving at an unknown speed
toward m1 . After the collision, the 8.8 kg cart recoils
with a speed of 9.2 m/s as shown in the figure but now
m2 is at rest. Find the mass of m2.

A ball of mass 0.310 kg that is moving with a speed of 5.7 m/s
collides head-on and elastically with another ball initially at
rest. Immediately after the collision, the incoming ball bounces
backward with a speed of 3.1 m/s .
1. Calculate the velocity of the target ball after the
collision.
2. Calculate the mass of the target ball.

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 28 minutes ago

asked 28 minutes ago

asked 44 minutes ago

asked 59 minutes ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 2 hours ago

asked 2 hours ago

asked 2 hours ago

asked 2 hours ago