Question

A cart of mass 2.50 kg moving with a speed of 4.00 m/s collides head-on with...

A cart of mass 2.50 kg moving with a speed of 4.00 m/s collides head-on with a 1.50 kg cart at rest. If the collision is elastic, what will be the speed and direction of each cart after the collision?

Homework Answers

Answer #1

m1 = 2.5kg v1i = +4 m/s

m2 = 1.5 kg v2i = 0 m/s

we need v2f and v1f so  

we need to apply momentum and energy collision becuase of collision is elastic

Pi =Pf

m1*v1i+m2*v2i = m1*v1f +m2*v2f  

energy conservation

0.5m1*v1i^2+0.5*m2*v2i^2 = 0.5*m1*v1f^2 +0.5*m2*v2f^2

from these two

we got

v1f = 1 m/s

v2f = 5 m/s

both have the same direction and moving in the same direction in which initially cart of mass 2.5 kg was moving

let me know in a comment if there is any problem or doubts

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 2.50 kg mass moving 7.50 m/s to the right collides head on with a 4.90...
A 2.50 kg mass moving 7.50 m/s to the right collides head on with a 4.90 kg mass. After the collision the 2.50 kg mass is moving 5.00 m/s to the left and the 4.90 kg mass is moving 4.88 m/s to the right. a. Calculate the velocity of the 4.90 kg mass before the collision b. If the collision lasts for 0.0625 seconds calculate the force that acted on each mass during the collision.
A 5.0-kg mass moving at 8.0 m/s collides head-on with a 3.0-kg mass initially at rest...
A 5.0-kg mass moving at 8.0 m/s collides head-on with a 3.0-kg mass initially at rest If the collision is perfectly elastic, what is the speed of the masses just after the collision? Is the kinetic energy conserved?
A ball of mass 2.5 kg moving east with a speed of 4.2 m/sec collides head-on...
A ball of mass 2.5 kg moving east with a speed of 4.2 m/sec collides head-on with a 1 kg ball initially moving at 1.7 m/sec to the west. If the collision is elastic, what will be the speed and direction of each ball after the collision?
A ball of mass 0.440 kg moving east (+x direction) with a speed of 3.60 m/s...
A ball of mass 0.440 kg moving east (+x direction) with a speed of 3.60 m/s collides head-on with a 0.260 kg ball at rest. If the collision is perfectly elastic, what will be the speed and direction of each ball after the collision?
A ball of mass 0.484 kg moving east (+xdirection) with a speed of 3.76 m/s collides...
A ball of mass 0.484 kg moving east (+xdirection) with a speed of 3.76 m/s collides head-on with a 0.242 kg ball at rest. Assume that the collision is perfectly elastic.    A)What is be the speed of the 0.484-kg ball after the collision? B)What is be the direction of the velocity of the 0.484-kg ball after the collision? C)What is the speed of the 0.242-kg ball after the collision? D)What is the direction of the velocity of 0.242-kg ball after...
A railroad car of mass 2.50 ✕ 104 kg moving at 3.40 m/s collides and couples...
A railroad car of mass 2.50 ✕ 104 kg moving at 3.40 m/s collides and couples with two coupled railroad cars, each of the same mass as the single car and moving in the same direction at 1.20 m/s. (a) What is the speed of the three coupled cars after the collision? (b) How much kinetic energy is lost in the collision?
A 7.50 kg bowling ball moving at 4.00 m/s makes an elastic head on collision with...
A 7.50 kg bowling ball moving at 4.00 m/s makes an elastic head on collision with a 2.50 kg bowling pin initially at rest. Find the velocity of the bowling pin after the collision.
A ball of mass 0.250 kg that is moving with a speed of 5.5 m/s collides...
A ball of mass 0.250 kg that is moving with a speed of 5.5 m/s collides head-on and elastically with another ball initially at rest. Immediately after the collision, the incoming ball bounces backward with a speed of 3.1 m/s . Calculate the velocity of the target ball after the collision. Calculate the mass of the target ball.
A cart of mass m1 = 8.8 kg, moving on frictionless surface with a speed of...
A cart of mass m1 = 8.8 kg, moving on frictionless surface with a speed of 2.5 m/s makes an elastic collision with a cart of unknown mass m2 moving at an unknown speed toward m1 . After the collision, the 8.8 kg cart recoils with a speed of 9.2 m/s as shown in the figure but now m2 is at rest. Find the mass of m2.
A ball of mass 0.310 kg that is moving with a speed of 5.7 m/s collides...
A ball of mass 0.310 kg that is moving with a speed of 5.7 m/s collides head-on and elastically with another ball initially at rest. Immediately after the collision, the incoming ball bounces backward with a speed of 3.1 m/s . 1. Calculate the velocity of the target ball after the collision. 2. Calculate the mass of the target ball.