Question

At time t,  r→ = 1.70t2 î - (7.60t + 7.80t2) ĵ gives the position of a...

At time t,  r→ = 1.70t2 î - (7.60t + 7.80t2) ĵ gives the position of a 3.0 kg particle relative to the origin of an xycoordinate system ( r→ is in meters and t is in seconds). (a) Find the torque acting on the particle relative to the origin at the moment 6.50 s (b) Is the magnitude of the particle’s angular momentum relative to the origin increasing, decreasing, or unchanging?

Homework Answers

Answer #1

The given position vector is
   
So, the velocity
   
And the acceleration of the particle is
  
And so, the force on the particle is
  
  

a)

   And so, the torque on the particle is
  
   
   
  
  
Now at time t = 6.5 s, we have the torque
     
     

b)
The angular momentum is
     
  
   
  
   
So, the magnitude of the angular momentum is
   
As the magnitude varies as the t^2, so, the magnitude of the angular momentum increases with time t.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
At time t,  r→ = 8.60t2 î - (4.90t + 6.10t2) ĵ gives the position of a...
At time t,  r→ = 8.60t2 î - (4.90t + 6.10t2) ĵ gives the position of a 3.0 kg particle relative to the origin of an xy coordinate system ( r→ is in meters and t is in seconds). (a) Find the torque acting on the particle relative to the origin at the moment 4.50 s (b) Is the magnitude of the particle’s angular momentum relative to the origin increasing, decreasing, or unchanging?
At time t, the vector ~r = 4t2i − (2t + 6t 2)ˆj gives the position...
At time t, the vector ~r = 4t2i − (2t + 6t 2)ˆj gives the position of a 3 kg particle relative to the origin of an xy coordinate system (~r is in meters and t is in seconds). What is the torque (in Newton-meters) acting on the particle relative to the origin? ANSWER IS 48t, PLEASE EXPLAIN IN DETAIL HOW YOU GOT IT
A 3.65 kg particle with velocity v→=(8.97m/s)î-(4.43m/s)ĵ is at x = 7.38 m, y = 5.02...
A 3.65 kg particle with velocity v→=(8.97m/s)î-(4.43m/s)ĵ is at x = 7.38 m, y = 5.02 m. It is pulled by a 2.09 N force in the negative x direction. About the origin, what are (a) the particle's angular momentum, (b) the torque acting on the particle, and (c) the rate at which the angular momentum is changing?
Force F→=(5.50N⁢)î-(5.35N⁢)k̂ acts on a pebble with position vector r→=(8.84m⁢)ĵ-(5.23m⁢)k̂, relative to the origin. What is...
Force F→=(5.50N⁢)î-(5.35N⁢)k̂ acts on a pebble with position vector r→=(8.84m⁢)ĵ-(5.23m⁢)k̂, relative to the origin. What is the resulting torque acting on the pebble about (a) the origin and (b) a point with coordinates (6.30 m, 0, -7.07 m)?
A particle of mass 2.00 kg moves with position r(t) = x(t) i + y(t) j...
A particle of mass 2.00 kg moves with position r(t) = x(t) i + y(t) j where x(t) = 10t2 and y(t) = -3t + 2, with x and y in meters and t in seconds. (a) Find the momentum of the particle at time t = 1.00 s. (b) Find the angular momentum about the origin at time t = 3.00 s.
A 4.71 kg mass moving in space according to v= (6.00t2 - t)i + (15.0t2)j +(t3...
A 4.71 kg mass moving in space according to v= (6.00t2 - t)i + (15.0t2)j +(t3 + 3.14t)k (relative to the origin), with v in meter/second and t in seconds. At t= 1.57s (a) what are the magnitude and direction of the force acting on the mass (b) what is the angle between the acceleration and velocity vector (c) what is the average velocity? (d) What is the mass angular momentum relative to the origin? (e) What is the torque...
A 3.00-kg particle starts from the origin at time zero. Its velocity as a function of...
A 3.00-kg particle starts from the origin at time zero. Its velocity as a function of time is given by v = (3t^2) i+ (2t) j where v is in meters per second and t is in seconds. (a) Find its position at t = 1s. (b) What is its acceleration at t = 1s ? (c) What is the net force exerted on the particle at t = 1s ?   (d) What is the net torque about the origin...
A 14.00 kg particle starts from the origin at time zero. Its velocity as a function...
A 14.00 kg particle starts from the origin at time zero. Its velocity as a function of time is given by v with arrow = 9t2î + 4tĵ where v with arrow is in meters per second and t is in seconds. (Use the following as necessary: t.) (a) Find its position as a function of time. r =________ (c) Find its acceleration as a function of time. a=_______m/s^2 ( (d) Find the net force exerted on the particle as...
At time t = 4 sec, a particle of mass M = 4.5 kg is at...
At time t = 4 sec, a particle of mass M = 4.5 kg is at the position (x,y,z) = (4,4,6) m and has velocity (2,1,-2) m/s. 1)What is the x component of the particle's angular momentum about the origin? 2)What is the y component of the particle's angular momentum about the origin? 3)What is the z component of the particle's angular momentum about the origin? 4)Now an identical particle is placed at (x,y,z) = (-4,-4,-6) m, with velocity (-2,-1,2)...
At time t = 11.5 sec, a particle of mass M = 5 kg is at...
At time t = 11.5 sec, a particle of mass M = 5 kg is at the position (x,y,z) = (4,4,6) m and has velocity (2,1,-2) m/s. 1) What is the x component of the particle's angular momentum about the origin? 2) What is the y component of the particle's angular momentum about the origin? 3) What is the z component of the particle's angular momentum about the origin? 4) Now an identical particle is placed at (x,y,z) = (-4,-4,-6)...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT