Question

A 5.00 kg object on a hor- izontal frictionless surface is at- tached to a spring...

A 5.00 kg object on a hor-

izontal frictionless surface is at-

tached to a spring with

k

1000 N/m. The object is dis-

placed from equilibrium 50.0

cm horizontally and given an initial velocity of 10.0 m/s back

toward the equilibrium position. What are (a) the motion’s

frequency, (b) the initial potential energy of the block – spring

system, (c) the initial kinetic energy, and (d) the motion’s am-

plitude?

Homework Answers

Answer #1

a) ω = square root(k/m) ; ω = square root (1000/5.00) = 14.14 rad/s

ω=2πf

f=ω/(2π)

f=14.14/6.28

=f = 2.25 Hz

b) potential energy = 0.5kx^2 ; (0.5)(1000)(0.5)2 (0.5 being the 50cm it was initially displaced converted to meters) calculating that gives 125J

c) kinetic energy = 0.5mv2 ; (0.5)(5.00)(10.0)^2 = 250 J

d) We know that the total energy of the system is given by 0.5kA2 and must equal the sum of kinetic and potential energy at any instant. Adding the results we just got for potential and kinetic energy gives us 486J. Let's call this E.

E= 0.5kA2 ; square root (2E/k) = A ;

A = square root[(2)(486)/1000] = 0.986 m

I hope help you !!

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 11.1 kg object on a horizontal frictionless surface is attached to a spring with k...
A 11.1 kg object on a horizontal frictionless surface is attached to a spring with k = 1300 N/m. The object is displaced from equilibrium 55.0 cm horizontally and given an initial velocity of 12.0 m/s back toward the equilibrium position. What are (a) the motion's frequency, (b) the initial potential energy of the block-spring system, (c) the initial kinetic energy, and (d) the motion's amplitude?
A 8.07 kg object on a horizontal frictionless surface is attached to a spring with k...
A 8.07 kg object on a horizontal frictionless surface is attached to a spring with k = 2180 N/m. The object is displaced from equilibrium 69.5 cm horizontally and given an initial velocity of 13.6 m/s back toward the equilibrium position. What are (a) the motion's frequency, (b) the initial potential energy of the block-spring system, (c) the initial kinetic energy, and (d) the motion's amplitude?  Answers to 3 significant digits (no scientific notation). Please provide unit of measurement.
A 3.0-kg block sliding on a frictionless horizontal surface is accelerated by a compressed spring. If...
A 3.0-kg block sliding on a frictionless horizontal surface is accelerated by a compressed spring. If the 200 N/m spring is initially compressed 10 cm, determine (a) the potential energy stored in the spring. As the block leaves the spring, find (b) the kinetic energy of the block, and (c) the velocity of the block.
If a 1 kg object on a horizontal, frictionless surface is attached to a spring, displaced,...
If a 1 kg object on a horizontal, frictionless surface is attached to a spring, displaced, and then released, it will oscillate. If it is displaced 0.120 m from its equilibrium position and released with zero initial speed. After 0.8 s its displacement is found to be 0.120 m on the opposite side, and it has passed the equilibrium position once during this interval. Find the amplitude, the period, the frequency, the angular frequency and the spring constant.
A block with a mass of 0.250 kg is placed on a horizontal frictionless surface, and...
A block with a mass of 0.250 kg is placed on a horizontal frictionless surface, and then attached to a spring with a spring constant of 5.00 N/m. The system is then set into motion, so that the block experiences simple harmonic motion with an amplitude of 18.0 cm. (c) Find the smallest amount of time it takes the block to move from a position of 18.0 cm from equilibrium to a position that is just 7.00 cm from equilibrium.
A 3.90 kg block hangs from a spring with spring constant 1980 N/m . The block...
A 3.90 kg block hangs from a spring with spring constant 1980 N/m . The block is pulled down 5.40 cm from the equilibrium position and given an initial velocity of 1.80 m/s back toward equilibrium. What is the frequency of the motion? What is the amplitude? What is the total mechanical energy of the motion?
A 35.0-g object connected to a spring with a force constant of 45.0 N/m oscillates with...
A 35.0-g object connected to a spring with a force constant of 45.0 N/m oscillates with an amplitude of 5.00 cm on a frictionless, horizontal surface. (a) Find the total energy of the system. mJ (b) Find the speed of the object when its position is 1.30 cm. (Let 0 cm be the position of equilibrium.) m/s (c) Find the kinetic energy when its position is 3.00 cm. mJ (d) Find the potential energy when its position is 3.00 cm....
. A block of mass 2.00 kg is attached to a horizontal spring with a force...
. A block of mass 2.00 kg is attached to a horizontal spring with a force constant of 500 N/m. The spring is stretched 5.00 cm from its equilibrium position and released from rest. Use conservation of mechanical energy to determine the speed of the block as it returns to equilibrium (a) if the surface is frictionless (b) if the coefficient of kinetic friction between the block and the surface is 0.350
A 1.50-kg object is attached to a spring and placed on frictionless, horizontal surface. A horizontal...
A 1.50-kg object is attached to a spring and placed on frictionless, horizontal surface. A horizontal force of 28.0 N is required to hold the object at rest when it is pulled 0.200 m from its equilibrium position (the origin of the x axis). The object is now released from rest from this stretched position, and it subsequently undergoes simple harmonic oscillations. a.)Find the force constant of the spring. b.)Find the frequency of the oscillations. c.)Find the maximum speed of...
A 3.30-kg object is attached to a spring and placed on frictionless, horizontal surface. A horizontal...
A 3.30-kg object is attached to a spring and placed on frictionless, horizontal surface. A horizontal force of 21.0 N is required to hold the object at rest when it is pulled 0.200 m from its equilibrium position (the origin of the x axis). The object is now released from rest from this stretched position, and it subsequently undergoes simple harmonic oscillations. (a) Find the force constant of the spring. N/m (b) Find the frequency of the oscillations. Hz (c)...