Question

A battery of ε = 2.60 V and internal resistance R = 0.700 Ω is driving...

A battery of ε = 2.60 V and internal resistance R = 0.700 Ω is driving a motor. The motor is lifting a 2.0 N mass at constant speed v = 0.50 m/s. Assuming no energy losses, find the current i in the circuit. Enter the lower current. Enter the higher current. Find the potential difference V across the terminals of the motor for the lower current.Find the potential difference V across the terminals of the motor for the higher current.

Homework Answers

Answer #1

let I is the current in the circuit.

Power delivered by the battery = Power dissipated at resistor + power condumced by the motor

Vo*I = I^2*R + F*v

2.6*I = I^2*0.7 + 2*0.5

==> I = 0.436 A (smaller current) <<<<<<------Answer

I = 3.28 A (higher current) <<<<<<------Answer

when lower current flows,

V_temrinal = Vo - I*R

= 2.6 - 0.436*0.7

= 2.29 V <<<<<<------Answer


when higher current flows,

V_temrinal = Vo - I*R

= 2.6 - 3.28*0.7

= 0.304 V <<<<<<------Answer

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A battery of ε = 2.90 V and internal resistance R = 0.500 Ω is driving...
A battery of ε = 2.90 V and internal resistance R = 0.500 Ω is driving a motor. The motor is lifting a 2.0 N mass at constant speed v = 0.50 m/s. Assuming no energy losses, find the current i in the circuit. A.Enter the lower current. B. Enter the higher current. C. Find the potential difference V across the terminals of the motor for the lower current. D. Find the potential difference V across the terminals of the...
A battery of ? = 2.10 V and internal resistance R = 0.600 ? is driving...
A battery of ? = 2.10 V and internal resistance R = 0.600 ? is driving a motor. The motor is lifting a 2.0 N mass at constant speed v = 0.50 m/s. Assuming no energy losses, find the current i in the circuit. (a) Enter the lower current. (b) Enter the higher current. (c) Find the potential difference V across the terminals of the motor for the lower current. (d) Find the potential difference V across the terminals of...
3) A damaged car battery with an emf of 11.4 V and an internal resistance of...
3) A damaged car battery with an emf of 11.4 V and an internal resistance of 0.01 ohms is connected to a load of 2.0 ohms. To help the battery, a second battery with an emf of 12.6 V and an internal resistance of 0.01 ohms is connected by jumper cables to the terminals of the first battery. a) Draw a diagram for the circuit. b) Find the current in each part of the circuit. c) Find the power delivered...
An automobile battery has an emf of 12.6 V and an internal resistance of 0.0890 ?....
An automobile battery has an emf of 12.6 V and an internal resistance of 0.0890 ?. The headlights together have an equivalent resistance of 5.10 ? (assumed constant). (a) What is the potential difference across the headlight bulbs when they are the only load on the battery? (Enter your answer to at least two decimal places.) V (b) What is the potential difference across the headlight bulbs when the starter motor is operated, with 35.0 A of current in the...
30) A damaged car battery with an emf of 11.4 V and internal resistance of 0.01...
30) A damaged car battery with an emf of 11.4 V and internal resistance of 0.01 ohms is connected to a load of 2.0 ohms. To help the battery, a second battery with an emf of 12.6 V and internal resistance of 0.01 ohms is connected by jumper cables to the terminals of the first battery. A) Draw a diagram for the circuit. B) Find the current in each part of the circuit. C) Find the power delivered by the...
In the figure assume that ε = 4.1 V, r = 120 Ω, R1 = 230...
In the figure assume that ε = 4.1 V, r = 120 Ω, R1 = 230 Ω, and R2 = 390 Ω. If the voltmeter resistance is RV = 4.9 kΩ, what percent error (including sign) does it introduce into the measurement of the potential difference across R1? Ignore the presence of the ammeter.
An inductor with an inductance of 2.00 H and a resistance of 7.90 Ω is connected...
An inductor with an inductance of 2.00 H and a resistance of 7.90 Ω is connected to the terminals of a battery with an emf of 5.80 V and negligible internal resistance. A) Find the initial rate of increase of current in the circuit. B) Find the rate of increase of current at the instant when the current is 0.540 A . C) Find the current 0.280 s after the circuit is closed. D) Find the final steady-state current.
7) A circuit consists of a capacitor (capacitance of 1μF) and a resistor (resistance 1000 Ω)...
7) A circuit consists of a capacitor (capacitance of 1μF) and a resistor (resistance 1000 Ω) in series, with a battery supplying a potential difference of 12.0 V. At time t=0 a switch is closed to allow current to flow in the circuit for the first time. Remember that the potential difference supplied by the battery ε is not the same as the potential across the capacitor ΔV unless a lot of time has elapsed. Also an RC circuit is...
With a 1600 MΩ resistor across its terminals, the terminal voltage of a certain battery is...
With a 1600 MΩ resistor across its terminals, the terminal voltage of a certain battery is 2.59 V . With only a 5.09 Ω resistor across its terminals, the terminal voltage is 1.67 V . 1.) Find the internal emf of this battery. E = ________ V 2.) Find the internal resistance of this battery. r = _________Ω 3.) What would be the terminal voltage if the 5.09 Ω resistor were replaced by a 7.09 Ω resistor? V3 = _____________...
The internal resistance of a battery is relatively small when the battery is new but increases...
The internal resistance of a battery is relatively small when the battery is new but increases as the battery ages. When a new 12.0-VV battery is attached to a 100 ΩΩ load, the potential difference across the load is 11.9 VV. After the circuit has operated for a while, the potential difference across the load is 10.9 VV . Part A By how much has the internal resistance of the battery changed? Express your answer using two significant digits.