Question

A parallel-plate capacitor is charged by a 18.0 V battery, then battery is removed. What is...

A parallel-plate capacitor is charged by a 18.0 V battery, then battery is removed.

What is the potential difference between the plates after the battery is disconnected?

What is the potential difference between the plates after a sheet of Teflon is inserted between them?

What is the power output of the charger in watts?

Homework Answers

Answer #1

1.

After disconnecting the battery the charge on the plates of the capacitor remains same and also potential difference will not change.
that is the potential difference is now 18V .

2.

The charge when the battery is removed Q = C*V

charge when battery is removed after inserting Teflon Q' = C'*V'

The dielectric teflon does not increase the charge but changes the capacitance and potential difference between the parallel plates ,

Q' = Q

and , C' = C/k

Q' = C'*V'

Q = k*C*V'

V' = Q/k*C

V' = V/k

V' = 18/2

V' = 9 V

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A Parallel plate capacitor is charged fully using a 48 V battery such that the charge...
A Parallel plate capacitor is charged fully using a 48 V battery such that the charge on it is 230 pC and the plate separation is 3 mm. The capacitor is then disconnected from the battery and the plate separation doubled. What is: The new charge on the plates after the separation is increased     The new potential difference between the plates     The Field between the plates after increasing the separation     How much work does one have to...
a parallel plate capacitor is fully charged by a battery, and then the battery is disconnected....
a parallel plate capacitor is fully charged by a battery, and then the battery is disconnected. if a dielectric material is then inserted between the capacitor plates, which of the following quantities would remain constant? A) electric field between the plates B) potential difference across the plates C) charge on each plate D) energy stored in capacitor E) charge and energy would both remain constant
Two experiments are carried out with a parallel plate capacitor (a) The capacitor is charged to...
Two experiments are carried out with a parallel plate capacitor (a) The capacitor is charged to a potential difference of 100 V, disconnected from the source, and then a slab of dielectric is inserted between the plates. (b) The capacitor is connected to a battery which maintains a potential difference of 100 V between the capacitor plates and then a slab of dielectric is inserted between the plates. In which experiment is the energy stored by the capacitor greatest? a)...
1 A parallel plate capacitor is connected to a battery and becomes fully charged the capacitor...
1 A parallel plate capacitor is connected to a battery and becomes fully charged the capacitor is then disconnected and the separation between the plates is halved in such a way that so charge leaks off As the plate separation is being halved which of the following parameters remains constant? An air filled k=1 ideal parallel plate capacitor has a capacitance of C. If the area of the plates is doubled insert a dielectric material k=2 and the distance between...
A parallel plate capacitor is made from two plates 7 cm^2 in area, with a plate...
A parallel plate capacitor is made from two plates 7 cm^2 in area, with a plate separation of 3 mm. The capacitor is fully charged across a 30 V battery, and then disconnected. How much charge is on the capacitor? Now material with a dielectric constant of 30 is inserted to fill the space between the plates, (with the battery disconnected), What is the charge on the capacitor? What is the energy stored in the capacitor? What the field between...
A Parallel plate capacitor is charged fully using a 48 V battery such that the charge...
A Parallel plate capacitor is charged fully using a 48 V battery such that the charge on it is 230 pC and the plate separation is 3 mm. The capacitor is then disconnected from the battery and the plate separation doubled. How much work does one have to do to pull the plates apart.
A parallel plate capacitor with a plate area of 20.0 cm2 and plate separation of 8.00...
A parallel plate capacitor with a plate area of 20.0 cm2 and plate separation of 8.00 mm is connected to a constant potential difference of 5.00 V. A dielectric with a dielectric constant of 4.00 is inserted between the plates. a) What is the energy stored in the capacitor? b) The capacitor is disconnected from the battery and the dielectric is removed from the interior of the capacitor. What is the new energy of the capacitor now? c) What does...
A parallel-plate capacitor with only air between the plates is charged by connecting it to a...
A parallel-plate capacitor with only air between the plates is charged by connecting it to a battery. The capacitor is then disconnected from the battery, without any of the charge leaving the plates. A voltmeter reads 44.0 V when placed across the capacitor. When a dielectric is inserted between the plates, completely filling the space, the voltmeter reads 14.5 V . What is the dielectric constant of this material? What will the voltmeter read if the dielectric is now pulled...
A parallel-plate capacitor is connected to a battery and then disconnected. If a dielectric is inserted...
A parallel-plate capacitor is connected to a battery and then disconnected. If a dielectric is inserted between the plates, what happens to (a) the capacitance and (b) the voltage?
A parallel-plate capacitor made of half-circular plates of radius 10 cm separated by 1.50 mm is...
A parallel-plate capacitor made of half-circular plates of radius 10 cm separated by 1.50 mm is charged to a potential difference of 600 volts by a battery. Then a sheet of tantalum pentoxide is pushed between the plates, completely filling the gap between them. How much additional charge flows from the battery to one of the plates when the tantalum pentoxide is inserted? Dielectric constant for some materials: mylar 3.1 polyethylene 2.6 polyvinyldifluoride 11. tantalum pentoxide 25. Teflon 2.1