Question

A thin uniform rod has a length of 0.490 m and is rotating in a circle...

A thin uniform rod has a length of 0.490 m and is rotating in a circle on a frictionless table. The axis of rotation is perpendicular to the length of the rod at one end and is stationary. The rod has an angular velocity of 0.37 rad/s and a moment of inertia about the axis of 3.50×10−3 kg⋅m2 . A bug initially standing on the rod at the axis of rotation decides to crawl out to the other end of the rod. When the bug has reached the end of the rod and sits there, its tangential speed is 0.124 m/s . The bug can be treated as a point mass.

A:What is the mass of the rod?

B:"What is the mass of the bug?

Homework Answers

Answer #1

a) Moment of inertia of a rod about an endpoint

is
I = 1/3*m*L^2
m = 3I/L^2
m = 3*3.5*10^-3/0.49^2
m = 0.044kg <--- mass of rod
-------
b)
The angular momentum L is conserved:
the new angular velocity is
w = v/R = 0.124m/s /0.49 m = 0.25 rad/s

L1 = I*w1 = 3.5*10^-3*0.37
L2 = I*w2 + I(bug)*w2
= 3.5*10^-3*0.25 + m(bug)*0.49^2*0.25
with I(bug) = mL^2

L1 = L2
3.5*10^-3*0.37 = 3.5*10^-3*0.25 + m(bug)*0.49^2*0.25
m(bug) = (3.5*10^-3*0.37 - 3.5*10^-3*0.25)/(0.49^2*0.25)
m(bug) = 6.8*10^-3 kg <--- mass of bug

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A thin uniform rod has a length of 0.430 m and is rotating in a circle...
A thin uniform rod has a length of 0.430 m and is rotating in a circle on a frictionless table. The axis of rotation is perpendicular to the length of the rod at one end and is stationary. The rod has an angular velocity of 0.32 rad/s and a moment of inertia about the axis of 3.20×10−3 kg⋅m2 . A bug initially standing on the rod at the axis of rotation decides to crawl out to the other end of...
A long, uniform rod of length  0.510 mm and is rotating in a circle on a frictionless...
A long, uniform rod of length  0.510 mm and is rotating in a circle on a frictionless table. The axis of rotation is perpendicular to the length of the rod at one end and is stationary. The rod has an angular velocity of 0.4 rad/srad/s and a moment of inertia about the axis of 2.70×10−3 kg⋅m2kg⋅m2 . An insect initially standing on the rod at the axis of rotation decides to walk to the other end of the rod. When the...
A thin rod has a length of 0.380 m and rotates in a circle on a...
A thin rod has a length of 0.380 m and rotates in a circle on a frictionless tabletop. The axis is perpendicular to the length of the rod at one of its ends. The rod has an angular velocity of 0.428 rad/s and a moment of inertia of 1.31 x 10 −3 kg·m 2 . A bug standing on the axis decides to crawl out to the other end of the rod. When the bug (whose mass is 5.00 x...
A thin rod has a length of 0.380 m and rotates in a circle on a...
A thin rod has a length of 0.380 m and rotates in a circle on a frictionless tabletop. The axis is perpendicular to the length of the rod at one of its ends. The rod has an angular velocity of 0.428 rad/s and a moment of inertia of 1.31 x 10 −3 kg·m 2 . A bug standing on the axis decides to crawl out to the other end of the rod. When the bug (whose mass is 5.00 x...
Interactive Solution 9.63 illustrates one way of solving a problem similar to this one. A thin...
Interactive Solution 9.63 illustrates one way of solving a problem similar to this one. A thin rod has a length of 0.594 m and rotates in a circle on a frictionless tabletop. The axis is perpendicular to the length of the rod at one of its ends. The rod has an angular velocity of 0.673 rad/s and a moment of inertia of 1.37 x 10-3 kg·m2. A bug standing on the axis decides to crawl out to the other end...
A thin, rigid, uniform rod has a mass of 1.40 kg and a length of 2.50...
A thin, rigid, uniform rod has a mass of 1.40 kg and a length of 2.50 m. (a) Find the moment of inertia of the rod relative to an axis that is perpendicular to the rod at one end. (b) Suppose all the mass of the rod were located at a single point. Determine the perpendicular distance of this point from the axis in part (a), such that this point particle has the same moment of inertia as the rod...
The uniform thin rod in the figure below has mass M = 2.00 kg and length...
The uniform thin rod in the figure below has mass M = 2.00 kg and length L = 2.87 m and is free to rotate on a frictionless pin. At the instant the rod is released from rest in the horizontal position, find the magnitude of the rod's angular acceleration, the tangential acceleration of the rod's center of mass, and the tangential acceleration of the rod's free end. HINT An illustration shows the horizontal initial position and vertical final position...
A thin, uniform rod is bent into a square of side length a. If the total...
A thin, uniform rod is bent into a square of side length a. If the total mass of the rod is M, find the moment of inertia about an axis through the center and perpendicular to the plane formed by the interior of the square. Thanks!
Calculate the moment of inertia of a thin rod rotating about an axis through its center...
Calculate the moment of inertia of a thin rod rotating about an axis through its center perpendicular to its long dimension. Do the same for rotation about an axis through one of the ends (perpendicular to the length again). Does this confirm the parallel axis theorem? Remember ?? = ? ??C????.
A uniform thin rod of length 0.56 m and mass 3.2 kg can rotate in a...
A uniform thin rod of length 0.56 m and mass 3.2 kg can rotate in a horizontal plane about a vertical axis through its center. The rod is at rest when a 3.5 g bullet traveling in the rotation plane is fired into one end of the rod. As viewed from above, the bullet's path makes angle θ = 60° with the rod. If the bullet lodges in the rod and the angular velocity of the rod is 12.0 rad/s...