Question

You illuminate a metal with light of wavelength 590 nm and find that the photoelectrons have...

You illuminate a metal with light of wavelength 590 nm and find that the photoelectrons have a maximum kinetic energy of 0.70 eV. You then illuminate the same metal with light of another wavelength and find a maximum kinetic energy of 1.9 eV for the photoelectrons.

What is the second wavelength, in nanometers?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. Light of wavelength 401 nm incident on a certain metal produces photoelectrons with a maximum...
1. Light of wavelength 401 nm incident on a certain metal produces photoelectrons with a maximum kinetic energy of 1.78 eV. What is the maximum wavelength of light capable of producing photoelectrons for this metal? 2. Electrons in an electron microscope have been accelerated through a potential difference of 1250 V. How large is their de Brogile wavelength?
When ultraviolet light with a wavelength of 400 nm falls on a certain metal surface, the...
When ultraviolet light with a wavelength of 400 nm falls on a certain metal surface, the maximum kinetic energy of the emitted photoelectrons is 1.10 eV . What is the maximum kinetic energy K_0 of the photoelectrons when light of wavelength 340 nm falls on the same surface? Use h = 6.63×10−34 J⋅s for Planck's constant and c = 3.00×108 m/s for the speed of light and express your answer in electron volts. View Available Hint(s) K_0 =    eV
When ultraviolet light with a wavelength of 400 nm falls on a certain metal surface, the...
When ultraviolet light with a wavelength of 400 nm falls on a certain metal surface, the maximum kinetic energy of the emitted photoelectrons is 1.10 eV . What is the maximum kinetic energy K0 of the photoelectrons when light of wavelength 330 nm falls on the same surface? Use h = 6.63×10?34J?s for Planck's constant and c = 3.00×108m/s for the speed of light and express your answer in electron volts.
Photons with a wavelength of 440 nm illuminate a metal surface. There is also a uniform...
Photons with a wavelength of 440 nm illuminate a metal surface. There is also a uniform magnetic field of 25 ?T in the region. Thus, electrons ejected from the metal are bent into circular arcs with radii ranging from essentially zero up to a maximum radius of 12 cm. a) What is the maximum kinetic energy of electrons ejected from the metal (in eV)? b) What is the work function of the metal (in eV)? c) What wavelength of light...
Photons with a wavelength of 440 nm illuminate a metal surface. There is also a uniform...
Photons with a wavelength of 440 nm illuminate a metal surface. There is also a uniform magnetic field of 25 ?T in the region. Thus, electrons ejected from the metal are bent into circular arcs with radii ranging from essentially zero up to a maximum radius of 24 cm. a) What is the maximum kinetic energy of electrons ejected from the metal (in eV)? b) What is the work function of the metal (in eV)? c) What wavelength of light...
Photoelectrons are observed when a metal surface is illuminated by light with a wavelength 437 nm....
Photoelectrons are observed when a metal surface is illuminated by light with a wavelength 437 nm. The stopping potential for the photoelectrons in this experiment is 1.67V. a. What is the work function of the metal, in eV? b. What type of metal is used in this experiment? c. What is the maximum speed of the ejected electrons?
Consider a beam of light with a wavelength λ = 403-nm incident onto a metal surface,...
Consider a beam of light with a wavelength λ = 403-nm incident onto a metal surface, which can be Li, Be or Hg. The work functions of these metals are 2.30-eV, 3.90-eV and 4.50-eV respectively. For the metal that exhibits the photoelectric effect find the maximum kinetic energy of the photoelectrons.
When ultraviolet light with a wavelength of 400 nmfalls on a certain metal surface, the maximum...
When ultraviolet light with a wavelength of 400 nmfalls on a certain metal surface, the maximum kinetic energy of the emitted photoelectrons is 1.10 eV . What is the maximum kinetic energy K0 of the photoelectrons when light of wavelength 350 nm falls on the same surface? Use h = 6.63×10?34 J?s for Planck's constant and c = 3.00×108 m/s for the speed of light and express your answer in electron volts.
a) A photon of wavelength 43 nm is incident upon a metal in a photoelectric apparatus....
a) A photon of wavelength 43 nm is incident upon a metal in a photoelectric apparatus. A stopping voltage of 21 V was obtained. What is the threshold frequency of the metal? (format of a.b x 10cdHz) b) Light with a frequency of 5.00 x 1014 Hz illuminates a photoelectric surface that has a work function of 2.10 x 10-19 J. What is the maximum kinetic energy of the emitted photoelectrons? (format of a.bc x 10-de J ) c) Light...
Light of wavelength 270 nm strikes a metal whose work function is 1.9 eV. What is...
Light of wavelength 270 nm strikes a metal whose work function is 1.9 eV. What is the shortest de Broglie wavelength for the electrons that are produced as photoelectrons?