Question

The following charges are located inside a submarine: 7.80 µC, −9.00 µC, 27.0 µC, and −44...

The following charges are located inside a submarine: 7.80 µC, −9.00 µC, 27.0 µC, and −44 µC.

Calculate the net electric flux through the hull of the submarine.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
What is the net electric flux through a closed surface that encloses the following four charges:...
What is the net electric flux through a closed surface that encloses the following four charges: q1 = −2.50 µC, q2 = +5.60 µC, q3 = −28.2 µC, and q4 = +45.0 µC?
Two point charges of magnitude -9.00 µC and -4.00 µC are placed along the x-axis at...
Two point charges of magnitude -9.00 µC and -4.00 µC are placed along the x-axis at x=0 cm and x=40.0 cm respectively. Where must a third charge q be placed along the x-axis so that it does not experience any net force between the other two charges? Please show work!
3 charges, A = 1.0 µC, B = 2.0 µC, and C = 6.0 µC, are...
3 charges, A = 1.0 µC, B = 2.0 µC, and C = 6.0 µC, are located on three vertices A, B, C of an equilateral triangle with sides 10 cm each. (a)Calculate the net force on A due to B and C (b)Calculate the net force on B due to A and C (c)Calculate the net force on C due to A and B (d)Another charge q is located at the mid point of the side BC. Calculate q...
Two point charges are on the y axis. A 3.10-µC charge is located at y =...
Two point charges are on the y axis. A 3.10-µC charge is located at y = 1.25 cm, and a -2-µC charge is located at y = −1.80 cm. (a) Find the total electric potential at the origin. ________ V (b) Find the total electric potential at the point whose coordinates are (1.50 cm, 0). ________ V
Two charges of 10 pC and –20 pC are inside a cube with sides that are...
Two charges of 10 pC and –20 pC are inside a cube with sides that are of 0.40-m length. Determine the net electric flux through the surface of one side of the cube.
Three equal charges 5.5 µC are located in the xy-plane, one at (0 m, 42 m),...
Three equal charges 5.5 µC are located in the xy-plane, one at (0 m, 42 m), another at (72 m, 0 m), and the third at (44 m,−33 m). Find the magnitude of the electric field at the origin due to these three charges. The value of Coulomb’s constant is 8.98755 × 109 N · m2 /C 2 . Answer in units of N/C.
Three point charges are arranged along the x-axis. Charge q1 = +3.75 µC is at the...
Three point charges are arranged along the x-axis. Charge q1 = +3.75 µC is at the origin, and charge q2 = -5.25 µC is at x = 0.300 m. Charge q3 = -9.00 µC. Where is q3 located if the net force on q1 is 6.00 N in the −x-direction?
2 charges, 21.44 µC each, are located at two vertices B & C of an equilateral...
2 charges, 21.44 µC each, are located at two vertices B & C of an equilateral triangle ABC with sides 2 cm each. Another charge q is located at point A. Calculate q in micro Coulomb so that net POTENTIAL at the mid point of BC will be ZERO.
2 charges, 14.34 µC each, are located at two vertices B & C of an equilateral...
2 charges, 14.34 µC each, are located at two vertices B & C of an equilateral triangle ABC with sides 2 cm each. Another charge q is located at point A. Calculate q in micro Coulomb so that net POTENTIAL at the mid point of BC will be ZERO.
Two opposite charges with same magnitude of 15 µC are located on the x-axis with the...
Two opposite charges with same magnitude of 15 µC are located on the x-axis with the positive charge at (-4cm, 0) and the negative charge at (4cm, 0). Solve for the electric field intensity at (3cm, 8cm). Draw the coordinate system with the test point and the charges correctly plotted and show all necessary solutions.