Question

A rigid adiabatic container is divided into two parts containing n1 and n2 mole of ideal...

A rigid adiabatic container is divided into two parts containing n1 and n2 mole of ideal gases respectively, by a movable and thermally conducting wall. Their pressure and volume are P1, V1 for part 1 and P2, V2 for part 2 respectively. Find the final pressure P and temperature T after the two gas reaches equilibrium. Assume the constant volume specific heats of the two gas are the same.

Homework Answers

Answer #1

given rigid adiabatic container
two parts
n1, n2 moles of ideal gas
movable thermal conducting wall
P1, V1, P2, V2 for part 2
assuming constant Cv and same Cv for both

from ideal gas equation
P1V1 = n1RT1
P2V2 = n2RT2

final temperature = T
change in internal energy
U1 = n1Cv(T - T1) = n1*Cv*(T - P1V1/n1R)
U2 = n2*Cv*(T - P2V2/n2R)

also
final pressure will be same in both as well
hence
PV1' = n1*RT
PV2' = n2*RT

also
V1' + V2' = V1 + V2
hence
P = RT(n1 + n2)/(V1 + V2)
V1' = n1*(V1 + V2)/(n1 + n2)
V2' = n2*(V1 + V2)/(n1 + n2)
also
work done by gas 1 = W
work done by gas 2= -W
heat lost by gas 1 = Q
heat lost by gas 2 = -Q
hence

-Q = W + U1
Q = -W + U2

U1 + U2 = 0
hence
n1*Cv*(T - P1V1/n1R) + n2*Cv*(T - P2V2/n2R) = 0
n1*T - P1V1/R + n2*T - P2V2/R = 0
T = (P1V1 + P2V2)/R(n1 + n2)
and
P = RT(n1 + n2)/(V1 + V2) = (P1V1 + P2V2)/(V1 + V2)

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the adiabatic, reversible expansion of a closed 1 mole sample of monatomic ideal gas from...
Consider the adiabatic, reversible expansion of a closed 1 mole sample of monatomic ideal gas from P1 = 100 bar, V1 = 1dm3, and T1 = 1200K to V2 = 1.5 dm3. What is the final temperature of the gas? What are the values of ΔE, ΔS and w for the process described in the previous question? ΔE = kJ ΔS = J/K w = kJ
Consider a mole of an ideal monatomic gas, Xe, inside a container with rigid walls. The...
Consider a mole of an ideal monatomic gas, Xe, inside a container with rigid walls. The ideal gas is heated up as a flame is applied to the container’s exterior. The molar mass of Xe is 0.131 kg. The gas does not transfer any heat to the container. Answer the following questions. A.) Before the flame is lit, the pressure of the gas inside the container is 10.1x10^5 Pa and the temperature of the gas is 295 K. If at...
A rigid, insulated container is divided into three equal compartments and contains an ideal gas. All...
A rigid, insulated container is divided into three equal compartments and contains an ideal gas. All are at a constant temperature of 25 deg C. Compartment 1 is at a pressure of 1 bar, Compartment 2 is at a pressure of 2 bars and Compartment 3 is at a pressure of 6 bars. The partitions between compartments are removed suddenly and the gas is allowed to reach equilibrium pressure in the container. What will be temperature and pressure reached? Explain...
A container is filled with an ideal diatomic gas to a pressure and volume of P1...
A container is filled with an ideal diatomic gas to a pressure and volume of P1 and V1, respectively. The gas is then warmed in a two-step process that increases the pressure by a factor of three and the volume by a factor of two. Determine the amount of energy transferred to the gas by heat if the first step is carried out at constant volume and the second step at constant pressure. (Use any variable or symbol stated above...
A container is filled with an ideal diatomic gas to a pressure and volume of P1...
A container is filled with an ideal diatomic gas to a pressure and volume of P1 and V1, respectively. The gas is then warmed in a two-step process that increases the pressure by a factor of five and the volume by a factor of three. Determine the amount of energy transferred to the gas by heat if the first step is carried out at constant volume and the second step at constant pressure. (Use any variable or symbol stated above...
A thermally insulated container is divided by a partition into two compartments, the right compartment having...
A thermally insulated container is divided by a partition into two compartments, the right compartment having a volume 4 times as large as the left compartment. The left compartment contains 2 moles of an ideal gas A at 25 °C and 0.8 atm. The right compartment contains 2 molesof an ideal gas B at 25 °C. The partition is removed and gases are mixed. Calculate the entropy change in the mixing process.
In the initial state, an ideal gas has pressure p1, volume V1 and temperature T1. Now...
In the initial state, an ideal gas has pressure p1, volume V1 and temperature T1. Now the gas changes its state by effecting a state change so that it reaches the pressure p2, the volume V2 and the temperature T2 in the new state. The pressure doubles during this state change, which is an isochore process. a) Find the work W performed during the isochore process. b) The heat Q is exchanged between the gas and the surroundings during the...
2. A cylindrical vessel with rigid adiabatic walls is separated into two parts by a frictionless...
2. A cylindrical vessel with rigid adiabatic walls is separated into two parts by a frictionless adiabatic piston. Each part contains 50.0 L of an ideal monatomic gas with Cv,m = 3R/2. Initially, Ti = 298 K, Pi = 1.0 bar in each part. Heat is slowly introduced into the left part using an electrical heater until the piston has moved sufficiently to the right to result in a final pressure Pf = 7.50 bar in the right part. Consider...
Part A A sample of ideal gas is in a sealed container. The pressure of the...
Part A A sample of ideal gas is in a sealed container. The pressure of the gas is 725 torr , and the temperature is 18 ∘C . If the temperature changes to 75 ∘C with no change in volume or amount of gas, what is the new pressure, P2, of the gas inside the container? Express your answer with the appropriate units. Part B Using the same sample of gas (P1 = 725 torr , T1 = 18 ∘C...
Part A A sample of ideal gas at room temperature occupies a volume of 27.0 L...
Part A A sample of ideal gas at room temperature occupies a volume of 27.0 L at a pressure of 202 torr . If the pressure changes to 1010 torr , with no change in the temperature or moles of gas, what is the new volume, V2? Express your answer with the appropriate units. Part B If the volume of the original sample in Part A (P1 = 202 torr , V1 = 27.0 L ) changes to 60.0 L...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT