Question

Frictional torque causes a disk to decelerate from an angular speed of 4.30 rad/s at t...

Frictional torque causes a disk to decelerate from an angular speed of 4.30 rad/s at

t = 0

to 2.00 rad/s at

t = 4.80 s.

The equation describing the angular speed of the wheel during this time interval is given by

dθ
dt

= ω0ebt,

where b and ω0 are constants.

(a) What are the values of b and

ω0

during this time interval?

b = _______s−1
ω0 = _______rad/s



(b) What is the magnitude of the angular acceleration of the disk at

t = 4.80 s?


______rad/s2

(c) How many revolutions does the disk make during the interval

t = 0

to

t = 4.80 s?


________rev

Homework Answers

Answer #1

for rev.... 14.43 rad = 14.43 / (2 X 3.14)= 2.3 rev

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A .13 kg disk is rotating at an angular speed of 57 rad/s. The disk has...
A .13 kg disk is rotating at an angular speed of 57 rad/s. The disk has a radius of .25m. The disk speeds up for 3 s. After the 3 s have passed, the edge of the disk is under a centripetal forxe of 313.13 N. What is the centripetal acceleration of the disk at this time? What is the final angular velocity of the disk after the 3 s? What is the angular acceleration during the 3 s interval...
A wheel rotates with a constant angular acceleration of 3.90 rad/s2. Assume the angular speed of...
A wheel rotates with a constant angular acceleration of 3.90 rad/s2. Assume the angular speed of the wheel is 2.05 rad/s at ti = 0. (a) Through what angle does the wheel rotate between t = 0 and t = 2.00 s? Give your answer in radians and revolutions. rad? rev? (b) What is the angular speed of the wheel at t = 2.00 s? rad/s? (c) What angular displacement (in revolutions) results while the angular speed found in part...
A wheel rotates with a constant angular acceleration of 3.90 rad/s2. Assume the angular speed of...
A wheel rotates with a constant angular acceleration of 3.90 rad/s2. Assume the angular speed of the wheel is 1.55 rad/s at ti = 0. (a) Through what angle does the wheel rotate between t = 0 and t = 2.00 s? Give your answer in radians and revolutions. ___________rad ___________ rev (b) What is the angular speed of the wheel at t = 2.00 s? __________rad/s (c) What angular displacement (in revolutions) results while the angular speed found in...
A wheel rotates with a constant angular acceleration of 3.00 rad/s2. If the angular speed of...
A wheel rotates with a constant angular acceleration of 3.00 rad/s2. If the angular speed of the wheel is 2.50 rad/s at t = 0, how many revolutions has the wheel gone through after 2.90 s?
PRACTICE IT A wheel rotates with a constant angular acceleration of 3.25 rad/s2. Assume the angular...
PRACTICE IT A wheel rotates with a constant angular acceleration of 3.25 rad/s2. Assume the angular speed of the wheel is 2.20 rad/s at ti = 0. (a) Through what angle does the wheel rotate between t = 0 and t = 2.00 s? Give your answer in radians and revolutions. ___________ rad ___________ rev (b) What is the angular speed of the wheel at t = 2.00 s? ___________rad/s (c) What angular displacement (in revolutions) results while the angular...
A 2300-kg Ferris wheel accelerates from rest to an angular speed of 0.16 rad/s in 10...
A 2300-kg Ferris wheel accelerates from rest to an angular speed of 0.16 rad/s in 10 s . Approximate the Ferris wheel as a circular disk with a radius of 24 m . What is the net torque on the wheel?
The combination of an applied force and a frictional force produces a constant torque of 40...
The combination of an applied force and a frictional force produces a constant torque of 40 N·m on a wheel rotating about a fixed axis. The applied force acts for 8.0 seconds, during which time the angular speed of the wheel increases from 0 to 700 degrees/second. The applied force is then removed, and the wheel comes to rest in 55 s. Answer the following questions. (a)What is the magnitude of the angular acceleration of the wheel while the applied...
The combination of an applied force and a constant frictional force produces a constant total torque...
The combination of an applied force and a constant frictional force produces a constant total torque of 35.8 N·m on a wheel rotating about a fixed axis. The applied force acts for 6.04 s. During this time the angular speed of the wheel increases from 0 to 10.2 rad/s. The applied force is then removed, and the wheel comes to rest in 59.7 s. (a) Find the moment of inertia of the wheel. _______ kg
3.The angular speed of a wheel is given by ω(t) = (2.00 rad/s2) t + (1.00...
3.The angular speed of a wheel is given by ω(t) = (2.00 rad/s2) t + (1.00 rad/s4) t3. a.How much is the angular displacement of the wheel from a time t = 0.00 s to t = T? b.How much is the angular acceleration of the wheel as a function of time?
The combination of an applied force and a friction force produces a constant total torque of...
The combination of an applied force and a friction force produces a constant total torque of 35.9 N · m on a wheel rotating about a fixed axis. The applied force acts for 6.20 s. During this time, the angular speed of the wheel increases from 0 to 9.6 rad/s. The applied force is then removed, and the wheel comes to rest in 60.5 s. (a) Find the moment of inertia of the wheel. kg · m2 (b) Find the...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT