Question

IA weight of mass 6.89 kg is suspended by a string of length 0.849 m, and...

IA weight of mass 6.89 kg is suspended by a string of length 0.849 m, and set into motion along circular horizontal path (see figure). The angle \theta? of the string with respect to vertical is 5.61^o?o??. What is the period of the circular motion? I can not uplaod the image!

Also I got 11 for this problem but apparently that is wrong: A mass, m?1??=24.9 kg mass is placed on a frictionless ramp which is inclined 43.5^\circ???? above horizontal. It is connected to a second mass, m?2??, by a strong rope which runs over a pulley at the apex of the ramp, so that the second mass is suspended in the air next to the ramp, as shown in the figure. Calculate the value of m?2?? necessary so that the first mass accelerates up the incline at rate of 1.66 m/s^2???.

I did 24.9*sin(43.5)-1.66/[1.66+9.8]

Homework Answers

Answer #1

in vertical,

T cos5.61 = m g = 6.89 x 9.8

T = (6.89 x 9.8)/cos5.61


in horizontal,

T sin5.61 = m v^2/ r

(6.89 x 9.8 / cos5.61) = 6.89 v^2 / (0.849 x sin5.61)

v = 0.904 m/s

anr r = 0.849 sin5.61 = 0.083 m


T = 2 pi r / v = 0.577 sec ......Ans


------------------------------------


on m1:

T - m1 g sin43.5 = m1 a
on m2:

m2 g - T = m2 a

9.8 m2 - (24.9 x 9.8 x sin43.5) = (24.9 x 1.66) + 1.66 m2

m2 = ((24.9 x 9.8 x sin43.5) + (24.9 x 1.66))/(1.66 + 9.8)


m2 = 18.3 kg

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A bob of mass m = 0.300 kg is suspended from a fixed point with a...
A bob of mass m = 0.300 kg is suspended from a fixed point with a massless string of length L = 21.0 cm . You will investigate the motion in which the string traces a conical surface with half-angle θ = 22.0 What tangential speed v must the bob have so that it moves in a horizontal circle with the string making an angle 22.0 ∘ with the vertical? Express your answer numerically in meters per second.
A mass of 4.83 kg is suspended from a 1.91 m long string. It revolves in...
A mass of 4.83 kg is suspended from a 1.91 m long string. It revolves in a horizontal circle. If the string makes an angle of 56.9 degrees with the vertical, then what is the net force acting on the mass?
A conical pendulum consists of a mass m suspended by a massless string of length l...
A conical pendulum consists of a mass m suspended by a massless string of length l as shown. The mass rotates in a horizontal circle at fixed angular velocity ω so that the string makes a constant angle β with the vertical. Show that the angular velocity of rotation is given by ω = √g/l cos β.
1. An object of mass 1.2 kg is attached to a string of 0.83 m. When...
1. An object of mass 1.2 kg is attached to a string of 0.83 m. When this object is rotated around a horizontal circle, it completes 15 revolutions in 9.6 seconds. a. What is the period (T) of this motion? b. What is the tangential velocity of the object? c. What is the tension on the string? Hint: The tension on the string is the centripetal force that causes the circular motion.
A small ball of clay of mass m hangs from a string of length L (the...
A small ball of clay of mass m hangs from a string of length L (the other end of which is fixed). A seond ball of clay of mass m/3 is to be launched horizontally out of a spring with spring constant k. Once launched, the second ball will collide with and stick to the hanging ball, and they'll follow a circular path around the fixed end of the string. A) Determine an expression for the distance (change in x)...
A pendulum consists of a 5.2 kg ball suspended by a 1.3 m length of string...
A pendulum consists of a 5.2 kg ball suspended by a 1.3 m length of string with negligible mass and is initially at rest. A 4.4 g bullet travelling at 680 m/s is fired horizontally into the ball and is lodged there. The ball and bullet rise together to a maximum height of h. How long does it take from the moment of impact for the ball to first reach its maximum height?
Two objects with masses of m1 = 3.90 kg and m2 = 5.70 kg are connected...
Two objects with masses of m1 = 3.90 kg and m2 = 5.70 kg are connected by a light string that passes over a frictionless pulley, as in the figure below. A string passes over a pulley which is suspended from a horizontal surface. A circular object of mass m1 and a rectangular object of m2 are, respectively, attached to the left and right ends of the string. (a) Determine the tension in the string. (Enter the magnitude only. Due...
A hanging weight, with a mass of m1 = 0.370 kg, is attached by a string...
A hanging weight, with a mass of m1 = 0.370 kg, is attached by a string to a block with mass m2 = 0.850 kg as shown in the figure below. The string goes over a pulley with a mass of M = 0.350 kg. The pulley can be modeled as a hollow cylinder with an inner radius of R1 = 0.0200 m, and an outer radius of R2 = 0.0300 m; the mass of the spokes is negligible. As...
1. For a stationary ball of mass m = 0.200 kg hanging from a massless string,...
1. For a stationary ball of mass m = 0.200 kg hanging from a massless string, draw arrows (click on the “Shapes” tab) showing the forces acting on the ball (lengths can be arbitrary, but get the relative lengths of each force roughly correct). For this case of zero acceleration, use Newton’s 2nd law to find the magnitude of the tension force in the string, in units of Newtons. Since we will be considering motion in the horizontal xy plane,...
An object with a mass of m = 5.5 kg is attached to the free end...
An object with a mass of m = 5.5 kg is attached to the free end of a light string wrapped around a reel of radius R = 0.260 m and mass of M = 3.00 kg. The reel is a solid disk, free to rotate in a vertical plane about the horizontal axis passing through its center as shown in the figure below. The suspended object is released from rest 6.40 m above the floor. (a) Determine the tension...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT