Question

A 350-N sphere 0.20 m in radius rolls without slipping 6.0 m down a ramp that...

A 350-N sphere 0.20 m in radius rolls without slipping 6.0 m down a ramp that is inclined at 25° with the horizontal. What is the angular speed of the sphere at the bottom of the slope if it starts from rest? rad/s

Homework Answers

Answer #1

from energy coservation

[ rotational kinetic energy + translational energy + potentional energy ]top =[ rotational kinetic energy + translational energy + potentional energy ]bottom

at top

rotational kinetic energy = 0 since at rest on top

translational energy = 0   

and potentional energy =  

at bottom

rotational kinetic energy =

translational energy =

potentional energy = 0;

since no slipping

and

so from energy conservation :

so here we take g = 9.81 m/s^2

m/s

so angular velocity from  

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 340-N sphere 0.20 m in radius rolls without slipping 6.0 m down a ramp that...
A 340-N sphere 0.20 m in radius rolls without slipping 6.0 m down a ramp that is inclined at 34° with the horizontal. What is the angular speed of the sphere at the bottom of the slope if it starts from rest? in rad/s
A 320-N sphere 0.20 m in radius rolls without slipping 6.0 m down a ramp that...
A 320-N sphere 0.20 m in radius rolls without slipping 6.0 m down a ramp that is inclined at 34° with the horizontal. What is the angular speed of the sphere at the bottom of the slope if it starts from rest?
A solid, uniform sphere of mass 2.0 kg and radius 1.7m rolls without slipping down an...
A solid, uniform sphere of mass 2.0 kg and radius 1.7m rolls without slipping down an inclined plane of height 7.0m . What is the angular velocity of the sphere at the bottom of the inclined plane? a) 5.8 rad/s b) 11.0 rad/s c) 7.0 rad/s d) 9.9 rad/s
Suppose a solid sphere of mass 450 g and radius 5.00 cm rolls without slipping down...
Suppose a solid sphere of mass 450 g and radius 5.00 cm rolls without slipping down an inclined plane starting from rest. The inclined plane is 7.00 m long and makes an angel of 20.0 o from the horizontal. The linear velocity of the sphere at the bottom of the incline is _______ m/s. please show work
A uniform disc of mass M=2.0 kg and radius R=0.45 m rolls without slipping down an...
A uniform disc of mass M=2.0 kg and radius R=0.45 m rolls without slipping down an inclined plane of length L=40 m and slope of 30°. The disk starts from rest at the top of the incline. Find the angular velocity at the bottom of the incline.
A solid sphere with a radius 0.25 m and mass 240 g rolls without slipping down...
A solid sphere with a radius 0.25 m and mass 240 g rolls without slipping down an incline, starting from rest from a height 1.0 m. a. What is the speed of the sphere when it reaches the bottom of the incline? b. From what height must a solid disk with the same mass and radius be released from rest to have the same velocity at the bottom? It also rolls without slipping.
A solid cylinder rolls without slipping down a 30° incline that is 5.0 m long. The...
A solid cylinder rolls without slipping down a 30° incline that is 5.0 m long. The cylinder's mass is 3.0 kg and its diameter is 44 cmcm . The cylinder starts from rest at the top of the ramp. 1) What is the linear speed of the center of the cylinder when it reaches the bottom of the ramp. 2) What is the angular speed of the cylinder about its center at the bottom of the ramp. 3) What is...
A solid, uniform disk of radius 0.250 m and mass 54.1 kg rolls down a ramp...
A solid, uniform disk of radius 0.250 m and mass 54.1 kg rolls down a ramp of length 3.80 m that makes an angle of 12.0° with the horizontal. The disk starts from rest from the top of the ramp. (a) Find the speed of the disk's center of mass when it reaches the bottom of the ramp. ___________m/s (b) Find the angular speed of the disk at the bottom of the ramp. ___________rad/s
A large sphere rolls without slipping across a horizontal surface as shown. The sphere has a...
A large sphere rolls without slipping across a horizontal surface as shown. The sphere has a constant translational speed of 10. m/s, a mass of 7.3 kg (16 lb bowling ball), and a radius of 0.20 m. The moment of inertia of the sphere about its center is I = (2/5)mr2. The sphere approaches a 25° incline of height 3.0 m and rolls up the ramp without slipping. (a) Calculate the total energy, E, of the sphere as it rolls...
1. A solid sphere of mass 50 kg rolls without slipping. If the center-of-mass of the...
1. A solid sphere of mass 50 kg rolls without slipping. If the center-of-mass of the sphere has a translational speed of 4.0 m/s, the total kinetic energy of the sphere is 2. A solid sphere (I = 0.4MR2) of radius 0.0600 m and mass 0.500 kg rolls without slipping down an inclined plane of height 1.60 m . At the bottom of the plane, the linear velocity of the center of mass of the sphere is approximately _______ m/s.