Question

An electromagnetic wave in vacuum has an electric field amplitude of 321 V/m. Calculate the amplitude of the corresponding magnetic field. _________nT

Answer #1

The electric field of an electromagnetic wave in a vacuum is
Ey=(18.0 V/m)cos((4.18 ×10^8)x−ωt), where x is in m and t is in
s.
What is the wavelength, frequency, and magnetic field amplitude
of the wave?

Consider an electromagnetic wave travelling in vacuum, where the
electric field is given by:
?⃗ (? ,?)=40(?/?) sin[(8×106 ???/?) (?+??)+1.57
???]?̂
a) Compute the:
i. frequency
ii. wavelength
iii. period
iv. amplitude
v. phase velocity
vi. direction of motion
b) Write the corresponding expression for the magnetic field of
this travelling wave (don’t forget to include the proper
units).
c) Plot this waveform as a function of x at t=0.

At some instant and location, the electric field associated with
an electromagnetic wave in vacuum has the strength 99.3 V/m. Find
the magnetic field strength ?, the total energy density ?, and the
power flow per unit area, all at the same instant and location.

At
some instant and location the electric field associated with an
electromagnetic wave in vacuum has the strength 87.5 V/m. Find the
magnetic field strength (T), the energy density (J/m3), and the
power flow per unit area (W/m2), all at the same instant and
location.

The magnetic field of an electromagnetic wave in a vacuum is Bz
=(3.8μT)sin((1.15×10^7)x−ωt), where x is in m and t is in s
What is the wavelength, frequency, and electric field amplitude
of the wave?

A plane electromagnetic wave, with wavelength 4.0 m, travels in
vacuum in the positive direction of an x axis. The
electric field, of amplitude 270 V/m, oscillates parallel to the
y axis. What are the (a) frequency,
(b) angular frequency, and (c)
angular wave number of the wave? (d) What is the
amplitude of the magnetic field component? (e)
Parallel to which axis does the magnetic field oscillate?
(f) What is the time-averaged rate of energy flow
associated with this...

A plane electromagnetic wave, with wavelength 2.5 m, travels in
vacuum in the positive direction of an x axis. The electric field,
of amplitude 270 V/m, oscillates parallel to the y axis. What are
the (a) frequency, (b) angular frequency, and (c) angular wave
number of the wave? (d) What is the amplitude of the magnetic field
component? (e) Parallel to which axis does the magnetic field
oscillate? (f) What is the time-averaged rate of energy flow
associated with this...

A plane electromagnetic wave, with wavelength 3.9 m, travels in
vacuum in the positive direction of an x axis. The
electric field, of amplitude 360 V/m, oscillates parallel to the
y axis. What are the (a) frequency,
(b) angular frequency, and (c)
angular wave number of the wave? (d) What is the
amplitude of the magnetic field component? (e)
Parallel to which axis does the magnetic field oscillate?
(f) What is the time-averaged rate of energy flow
associated with this...

Consider a sinusoidal electromagnetic wave propagating in the +x
direction, whose electric field is parallel to the y axis. The wave
has wavelength 475 nm, and the electric field has amplitude 3.20 x
10^-3 V m-1. What is the frequency of the wave? What is the
amplitude of the magnetic field? What are the vector equations for
E(x,t) and B(x,t)?

A plane electromagnetic wave traveling in the positive direction
of an x axis in vacuum has components Ex = Ey = 0 and Ez = (4.5
V/m) cos[(π × 1015 s-1)(t - x/c)].(a) What is the amplitude of the
magnetic field component?

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 11 minutes ago

asked 15 minutes ago

asked 28 minutes ago

asked 41 minutes ago

asked 45 minutes ago

asked 48 minutes ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago