Question

A car travels in a flat circle of radius R. At a certain instant the velocity...

A car travels in a flat circle of radius R. At a certain instant the velocity of the car is 20 m/s north, and the total acceleration of the car is 2.5 m/s2 37o south of west. Which of the following is correct?

R= 0.16 km, and the car's speed is decreasing.
R = 0.20 km, and the car's speed is decreasing.
R = 0.16 km, and the car's speed is increasing.
R = 0.20 km, and the car's speed is increasing.
R = 0.40 km, and the car's speed is decreasing.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
a) At a certain instant, a rotating turbine wheel of radius R has angular speed ω...
a) At a certain instant, a rotating turbine wheel of radius R has angular speed ω (measured in rad/s). What must be the magnitude α of its angular acceleration (measured in rad/s2) at this instant if the acceleration vector a⃗ of a point on the rim of the wheel makes an angle of exactly 30∘ with the velocity vector v⃗ of that point? Express your answer in terms of some or all of the variables R and ω. b) At...
A car is traveling around a horizontal circular track with radius r = 210 m at...
A car is traveling around a horizontal circular track with radius r = 210 m at a constant speed v = 23 m/s as shown. The angle θA = 23° above the x axis, and the angle θB = 53° below the x axis. 1) What is the magnitude of the car’s acceleration? m/s2 Your submissions: 2) What is the x component of the car’s acceleration when it is at point A m/s2 Your submissions: 3) What is the y...
1. An object moves with velocity vector [11,8] measured in m/s. a) What is the object's...
1. An object moves with velocity vector [11,8] measured in m/s. a) What is the object's speed in the x direction? b) What is the object's speed in the y direction? 2. A car goes 5.0 km east, then 3.0 km west, then 2.0 km north. Determine the car's displacement and represent it a) as a vector b) in polar coordinates (r, θ) ie magnitude and direction.
At the instant shown, the car at A is traveling 10 m/s at 45° SE around...
At the instant shown, the car at A is traveling 10 m/s at 45° SE around the curve with radius of curvature of 100 m, while increasing its speed at 8 m/s sq. The car at B is traveling at 18.5 m/s along the straightway eastward and increasing its speed at 5 m/s sq. Determine the relative velocity and relative acceleration of B with respect to A at this instant. The normal component of acceleration for car A makes a...
A 1600 kg car travels around a 200. m radius curve with a speed of 15...
A 1600 kg car travels around a 200. m radius curve with a speed of 15 m/s. Find the following: a. Free body diagram from viewing the back of the car. b. Acceleration of the car. c. Frictional force on the car at this velocity. d. Minimum coefficient of static friction for the car to travel around the curve at this speed.
At the instant shown, the car at A is traveling 10 m/s at 45° SE around...
At the instant shown, the car at A is traveling 10 m/s at 45° SE around the curve with radius of curvature of 100 m, while increasing its speed at 8 m/s sq.  The car at B is traveling at 18.5 m/s along the straightway eastward and increasing its speed at 5 m/s sq.  Determine the relative velocity and relative acceleration of B with respect to A at this instant. The normal component of acceleration for car A makes a 45° with...
a) A 2.00 kg stone is whirled in a circle by a rope 4.00 m long,...
a) A 2.00 kg stone is whirled in a circle by a rope 4.00 m long, completing 5 revolutions in 2.00 s. Calculate the tension in the rope if the stone is rotated horizontally on a smooth frictionless surface. Input your answer in Newtons but do not include the unit in your answer. b) What is the centripetal acceleration of a locomotive that travels around a circular curve of radius 250 m at a constant speed of 70 km/h?Input your...
1. A certain sea cow can paddle 2.0 m/s in still water. If she attempts to...
1. A certain sea cow can paddle 2.0 m/s in still water. If she attempts to cross a river, from the south bank to the north with a current of 3.0 m/s flowing toward the east by paddling entirely perpendicularly to the flow of the river, in what direction will she be traveling relative to an observer on shore? A. 12 degrees east of north B. 49 degrees west of south C. due east D. due north E. 34 degrees...
An automobile moves on a circular track of radius 1.04 km. It starts from rest from...
An automobile moves on a circular track of radius 1.04 km. It starts from rest from the point (x, y) = (1.04 km, 0 km) and moves counterclockwise with a steady tangential acceleration such that it returns to the starting point with a speed of 29.2 m/s after one lap. (The origin of the Cartesian coordinate system is at the center of the circular track.) What are the car's position and velocity vectors when it is one-sixth of the way...
a- What is the maximum speed with which a 1200-kg car can round a turn of...
a- What is the maximum speed with which a 1200-kg car can round a turn of radius 90.0 m on a flat road if the coefficient of static friction between tires and road is 0.60? Part b If the jet is moving at a speed of 1140 km/h at the lowest point of the loop, determine the minimum radius of the circle so that the centripetal acceleration at the lowest point does not exceed 6.0 g's. Express your answer to...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT