Question

Explain why a vector cannot have a component greater than its own magnitude

Explain why a vector cannot have a component greater than its own magnitude

Homework Answers

Answer #1

No,component of vector cannot have magnitude greater than the vector .

Lets say A is vector in a two dimensional x-y plane then projection on x axis that is x component is equal to Ax=|A|cos and Ay=|A|sin . Since value of cos and sin is between  -1<x<1. So magnitude of component is always lesser than vector.

geometric explanation .

let Ax, Ay be the horizontal and vertical components.
The reason that it can't be greater is that when you join the components from head to tail, it forms a right angled triangle, and the hypotenuse that is the formed by vector is always greater than its sides.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Can the magnitude of a vector be equal to the magnitude of one of its x...
Can the magnitude of a vector be equal to the magnitude of one of its x or y components? Explain. Can it be less than the magnitude of either the x component or the y component? Explain.
How does the magnitude of the velocity vector at impact compare with the magnitude of the...
How does the magnitude of the velocity vector at impact compare with the magnitude of the initial velocity vector? (a,b,c, or d) (a) They are the same since the magnitude of the vertical component of velocity is the same at each height on the way up and on the way down. (b) It is greater at impact.     (c) They are the same since the ball during its flight has an upward acceleration as its height increases and a downward acceleration...
A position vector in the fourth quadrant has an x-component of 15 m and a magnitude...
A position vector in the fourth quadrant has an x-component of 15 m and a magnitude of 25 m. What is the value of its y-component?
Activity 1. Switch from component- to magnitude-angle representation of a vector Determine the magnitude and the...
Activity 1. Switch from component- to magnitude-angle representation of a vector Determine the magnitude and the angle with respective to the positive x-axis for the following vectors. Check with the simulation to confirm your result. VECTOR MAGNITUDE ANGLE MAGNITUDE ANGLE Calculated From Simulation (25, 10) (-10, 5) Question: For the second vector, did you get the same angle as the simulation showed?
You are given a vector in the xy plane that has a magnitude of 83.0 units...
You are given a vector in the xy plane that has a magnitude of 83.0 units and a y component of -68.0 units. What are the two possibilities for its x component? X1,X2 = 47.6, -47.6 Assuming the x component is known to be positive, specify the magnitude of the vector which, if you add it to the original one, would give a resultant vector that is 80.0 units long and points entirely in the -x direction. (V=?) Specify the...
You are given a vector in the xy plane that has a magnitude of 80.0 units...
You are given a vector in the xy plane that has a magnitude of 80.0 units and a y component of -57.0 units. What are the two possibilities for its x component? answers using three significant figures separated by a comma. Assuming the x component is known to be positive, specify the magnitude of the vector which, if you add it to the original one, would give a resultant vector that is 80.0 units long and points entirely in the...
You are given a vector in the xy plane that has a magnitude of 87.0 units...
You are given a vector in the xy plane that has a magnitude of 87.0 units and a y component of -55.0 units. a) What are the two possibilities for its x component? Enter your answers using three significant figures separated by a comma. b) Assuming the x component is known to be positive, specify the magnitude of the vector which, if you add it to the original one, would give a resultant vector that is 80.0 units long and...
___1. Equipotential lines cannot cross because _____. A) they cannot have the same magnitude B) they...
___1. Equipotential lines cannot cross because _____. A) they cannot have the same magnitude B) they cannot have the same direction C) they cannot have the same magnitude and direction ___2. Electric field lines cannot cross because _____. A) they cannot have the same magnitude B) they cannot have the same direction C) they cannot have the same magnitude and direction
Explain why the entropy of a gas is much greater than the entropy of a liquid,...
Explain why the entropy of a gas is much greater than the entropy of a liquid, and why the entropy of a liquid is greater than the entropy of a solid
A firm's average variable cost cannot be greater than its average total cost. Select one: a....
A firm's average variable cost cannot be greater than its average total cost. Select one: a. False b. True
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT