Question

A thin hoop and a solid disk having the same mass and outer radii of 1.3...

A thin hoop and a solid disk having the same mass and outer radii of 1.3 g and 43 mm, respectively, are released from rest as shown. Each rolls without slipping. D28Determine the kinetic energy in J and the angular velocity in radian/s of each having travelled a distance of 2.1 m down the 6 deg incline: (a) thin hoop and (b) solid cylilnder.

Homework Answers

Answer #1

The total kinetic energy is given by

.............EQ1

where, is the mass of the obeject,

, is the rotational moment of inertia,

is the outher radii

is the angular velocity,

, is the linear velocity for pure rolling,

Thus EQ1 changes to:

................EQ2

The potential energy loss will be:

,..........EQ3

where, is the angle of inclination,

is the distance travelled on the inclined plane.

Since objects are rolling down an inclined plane, the gain the kinetic energy (rotational + translational) will be equal to the loss of the potential energy. The kinetic energy will be same for the obects as their mass is equal. Thus we equate EQ2 and EQ3, we get

Also,

...........EQ4

A. For thin hoop, , substituting values in EQ4, we get

B. For solid cylinder (cross-section is solid disc), , substituting values in EQ4, we get

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Problem 4 A hoop and a solid disk both with Mass (M=0.5 kg) and radius (R=...
Problem 4 A hoop and a solid disk both with Mass (M=0.5 kg) and radius (R= 0.5 m) are placed at the top of an incline at height (h= 10.0 m). The objects are released from rest and rolls down without slipping. a) The solid disk reaches to the bottom of the inclined plane before the hoop. explain why? b) Calculate the rotational inertia (moment of inertia) for the hoop. c) Calculate the rotational inertia (moment of inertia) for the...
An object (either solid sphere, hoop or solid disk) of Mass M=10kg and radius R=4m is...
An object (either solid sphere, hoop or solid disk) of Mass M=10kg and radius R=4m is at the bottom of an incline having inclination angle X=40 degrees and base length X=15 meters, with an initial rotational velocity omega(i)=2rad/s; it is subsequently pulled up the the incline by some force F=15 (Newtons) such that at the top of the incline it has a final rotational velocity omega(f)=7rad/s. Determine: a) the linear velocity, b) rotational KE and c) total work and work...
A solid sphere with a radius 0.25 m and mass 240 g rolls without slipping down...
A solid sphere with a radius 0.25 m and mass 240 g rolls without slipping down an incline, starting from rest from a height 1.0 m. a. What is the speed of the sphere when it reaches the bottom of the incline? b. From what height must a solid disk with the same mass and radius be released from rest to have the same velocity at the bottom? It also rolls without slipping.
A uniform solid disk of mass 2.20 kg and diameter 50.0 cm starts from rest and...
A uniform solid disk of mass 2.20 kg and diameter 50.0 cm starts from rest and rolls without slipping down a 30.0 ? incline that is 5.25 m long. g = 9.81 m/s2 . (a) Calculate the linear speed of the center of the disk when it reaches the bottom of the incline. (b) Determine the angular speed of the disk about its center at the bottom of the incline. (c) Through what angle (in radians) does this disk turn...
An 8.20 cm-diameter, 390g solid sphere is released from rest at the top of a 2.00m...
An 8.20 cm-diameter, 390g solid sphere is released from rest at the top of a 2.00m long, 19.0 degree incline. It rolls, without slipping, to the bottom. 1) What is the sphere's angular velocity at the bottom of the incline? 2) What fraction of its kinetic energy is rotational?
An 6.90-cm-diameter, 360 g solid sphere is released from rest at the top of a 1.80-m-long,...
An 6.90-cm-diameter, 360 g solid sphere is released from rest at the top of a 1.80-m-long, 20.0 ∘ incline. It rolls, without slipping, to the bottom. What is the sphere's angular velocity at the bottom of the incline? What fraction of its kinetic energy is rotational?
Consider the following three objects, each of the same mass and radius: 1) Solid Sphere 2)...
Consider the following three objects, each of the same mass and radius: 1) Solid Sphere 2) Solid Disk 3) Hoop. All three are release from rest at top of an inclined plane. The three objects proceed down the incline undergoing rolling motion without slipping. use work-kinetic energy theorem to determine which object will reach the bottom of the incline first
An 8.50-cm-diameter, 360 g solid sphere is released from rest at the top of a 1.90-m-long,...
An 8.50-cm-diameter, 360 g solid sphere is released from rest at the top of a 1.90-m-long, 15.0 ∘ incline. It rolls, without slipping, to the bottom. Part A What is the sphere's angular velocity at the bottom of the incline? Part B What fraction of its kinetic energy is rotational?
A solid cylinder of mass 1.3 kg and radius 2.0 cm starts from rest at some...
A solid cylinder of mass 1.3 kg and radius 2.0 cm starts from rest at some height above the ground and rolls down an ncline without slipping. At the bottom of the incline, its linear speed is 2.5 m/s. (a) How much is its angular speed? (b) How much is its rotational kinetic energy? The moment of inertia of a solid cyllinder is 21mR2 (c) How much is its total energy at the bottom? (d) From what height did it...
An green hoop with mass mh = 2.7 kg and radius Rh = 0.15 m hangs from a string that...
An green hoop with mass mh = 2.7 kg and radius Rh = 0.15 m hangs from a string that goes over a blue solid disk pulley with mass md = 2.1 kg and radius Rd = 0.09 m. The other end of the string is attached to a massless axel through the center of an orange sphere on a flat horizontal surface that rolls without slipping and has mass ms = 3.7 kg and radius Rs = 0.19 m. The system is released from rest. 1. What is magnitude...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT