Question

A rapidly spinning ice skater has her hands close to her body. She then extends her...

A rapidly spinning ice skater has her hands close to her body. She then extends her arms horizontally. What change, if any, will there be in the following quantities related to her motion? Moment of Inertia, Angular velocity, Angular Momentum. Ignoring friction, tell whether each would increase, decrease, or remain constant.

Homework Answers

Answer #1

Solution) When ice skater draws her arms and a leg inward ,she reduces the distance between axis of rotation and some of her mass , reducing her moment of inertia since angular momentum is conserved her rotational velocity increases to compensate .

So moment of inertia and angular velocity changes but angular momentum remains constant

So to conserve angular momentum if moment of inertia increases angular velocity decreases and if moment of inertia decreases angular velocity increases .

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A skater is spinning on the ice and extends her arms out straight. Discuss the effect...
A skater is spinning on the ice and extends her arms out straight. Discuss the effect this will have on her moment of inertia, her angular momentum, and her angular velocity. Will each increase, decrease, or stay the same? Explain. Please be specific?
a figure skater presses off the ice to begin spinning with her arms close to her...
a figure skater presses off the ice to begin spinning with her arms close to her body. after completing 2 turns in 0.8 seconds she moves her arms further away from her body, what will her new angular velocity be? a. <16.6rad/s b. 18 rad/s c. 20 rad/s d. 24 rad/s
An ice skater with a moment of inertia of 0.390 kg*m2 is spinning at 6.00 rev/s...
An ice skater with a moment of inertia of 0.390 kg*m2 is spinning at 6.00 rev/s a. What is the angular velocity of the ice skater in rad/s? b. What is the angular momentum of the ice skater at this angular velocity c. He reduces his rate of spin (angular velocity) by extending his arms and increasing his moment of inertia. Find the value of his moment of inertia if his angular velocity drops to 1.70 rev/s d. Suppose instead...
  An ice skater is spinning at 6.6 rev/s and has a moment of inertia of 0.52...
  An ice skater is spinning at 6.6 rev/s and has a moment of inertia of 0.52 kg ⋅ m2. a.)  Calculate the angular momentum, in kilogram meters squared per second, of the ice skater spinning at 6.6 rev/s. b.)  He reduces his rate of rotation by extending his arms and increasing his moment of inertia. Find the value of his moment of inertia (in kilogram meters squared) if his rate of rotation decreases to 1.5 rev/s. c.) Suppose instead he keeps his...
The moment of inertia of an ice skater is 0.400 kg·m2 when he is spinning at...
The moment of inertia of an ice skater is 0.400 kg·m2 when he is spinning at 6.00 rev/s. (a) He reduces his angular velocity by extending his arms and increasing his moment of inertia. Find the value of his moment of inertia if his angular velocity decreases to 1.25 rev/s. (b) Suppose instead he keeps his arms in and allows friction on the ice to slow him to 3.00 rev/s What average torque was exerted if this takes 15.0 s?
A figure skater is spinning slowly with arms outstretched. He brings his arms in close to...
A figure skater is spinning slowly with arms outstretched. He brings his arms in close to his body and his angular velocity changes by a factor of 2. By what factor does his moment of inertia change, and why?
a) Calculate the angular momentum (in kg·m2/s) of an ice skater spinning at 6.00 rev/s given...
a) Calculate the angular momentum (in kg·m2/s) of an ice skater spinning at 6.00 rev/s given his moment of inertia is 0.450 kg·m2. Answer to 3 significant figures. (b) He reduces his rate of spin (his angular velocity) by extending his arms and increasing his moment of inertia. Find the value of his moment of inertia (in kg·m2) if his angular velocity drops to 1.35 rev/s. Answer to 3 significant figures. c) Suppose instead he keeps his arms in and...
a) Calculate the angular momentum (in kg·m2/s) of an ice skater spinning at 6.00 rev/s given...
a) Calculate the angular momentum (in kg·m2/s) of an ice skater spinning at 6.00 rev/s given his moment of inertia is 0.450 kg·m2. Answer to 3 significant figures. (b) He reduces his rate of spin (his angular velocity) by extending his arms and increasing his moment of inertia. Find the value of his moment of inertia (in kg·m2) if his angular velocity drops to 1.35 rev/s. Answer to 3 significant figures. c) Suppose instead he keeps his arms in and...
Typed please. An ice skater can change the speed of her rotation by bringing her arms...
Typed please. An ice skater can change the speed of her rotation by bringing her arms close to her body. Because her angular momentum is approximately conserved, why does she rotate faster? Before she starts spinning, how does she generate rotation in the first place?
What is the angular momentum of a figure skater spinning at 3.2rev/s with arms in close...
What is the angular momentum of a figure skater spinning at 3.2rev/s with arms in close to her body, assuming her to be a uniform cylinder with a height of 1.5m , a radius of 16cm , and a mass of 55kg? How much torque is required to slow her to a stop in 4.4s , assuming she does not move her arms?