Question

The velocity v of a particle moving in the xy plane is given by v =...

The velocity v of a particle moving in the xy plane is given by

v = (7.0t -4.0t2 )i + 7.5j, in m/s. Here v is in m/s and t (for positive time) is in s. What is the acceleration when t = 3.0 s? i-component of acceleration?

j-component of acceleration?

When (if ever) is the acceleration zero (enter time in s or 'never')?

When (if ever) is the velocity zero (enter time in s or 'never')?

Homework Answers

Answer #1

As given in question

v=(7.0 t - 4.0 t²) i + 7.5 j [ in m/sec]

As we know that

Acceleration, a = dv/dt

Therefore, a = {(7.0 t - 4.0 t²) i + 7.5 j}/dt

a = (7.0 - 8.0 t ) i

So, acceleration when t = 3.0 sec

a = (7.0 - 8.0 * 3.0) i = - 17 i m/ sec²

i component of acceleration is -17 m/sec²

j component of acceleration is zero (0)

For acceleration to be zero, i.e. a= 0

Therefore 7.0 - 8.0 t = 0

That implies, t = 7.0/8.0 = 0.87 second

i component of velocity will be zero at t = 0 but velocity of j component will never be zero. So velocity will never be zero.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The acceleration of a particle moving only on a horizontal xy plane is given by a→=3ti^+4tj^,...
The acceleration of a particle moving only on a horizontal xy plane is given by a→=3ti^+4tj^, where a→ is in meters per second-squared and t is in seconds. At t = 0, the position vector r→=(19.0m)i^+(44.0m)j^ locates the particle, which then has the velocity vector v→=(5.40m/s)i^+(1.70m/s)j^. At t = 4.10 s, what are (a) its position vector in unit-vector notation and (b) the angle between its direction of travel and the positive direction of the x axis?
A particle moving in the xy-plane has velocity v⃗ =(2ti+(3−t2)j)m/s, where t is in s. What...
A particle moving in the xy-plane has velocity v⃗ =(2ti+(3−t2)j)m/s, where t is in s. What is the x component of the particle's acceleration vector at t = 7 s? What is the y component of the particle's acceleration vector at t = 7 s?
The acceleration of a particle moving only on a horizontal xy plane is given by ModifyingAbove...
The acceleration of a particle moving only on a horizontal xy plane is given by ModifyingAbove a With right-arrow equals 4t ModifyingAbove i With caret plus 5t ModifyingAbove j With caret, where ModifyingAbove a With right-arrow is in meters per second-squared and t is in seconds. At t = 0, the position vector ModifyingAbove r With right-arrow equals left-parenthesis 24.0mright-parenthesis ModifyingAbove i With caret plus left-parenthesis 49.0mright-parenthesis ModifyingAbove j With caret locates the particle, which then has the velocity vector...
1-The velocity of a particle is v = { 6 i + ( 28 - 2...
1-The velocity of a particle is v = { 6 i + ( 28 - 2 t ) j } m/s, where t is in seconds. If r=0 when t=0, determine particle displacement during time interval t = 3 s to t = 8 s in the y direction. 2-A particle, originally at rest and located at point (1 ft, 4 ft, 5 ft), is subjected to an acceleration of a={ 3 t i + 17 t2k} ft/s. Determine magnitude...
Mass of a Moving Particle The mass m of a particle moving at a velocity v...
Mass of a Moving Particle The mass m of a particle moving at a velocity v is related to its rest mass m0 by the equation m = m0 1 − v2 c2 where c (2.98 ✕ 108 m/s) is the speed of light. Suppose an electron of rest mass 9.11 ✕ 10−31 kg is being accelerated in a particle accelerator. When its velocity is 2.84 ✕ 108 m/s and its acceleration is 2.49 ✕ 105 m/s2, how fast is...
The velocity of a particle moving along the x-axis varies with time according to v(t) =...
The velocity of a particle moving along the x-axis varies with time according to v(t) = A + Bt−1, where A = 7 m/s, B = 0.33 m, and 1.0 s ≤ t ≤ 8.0 s. Determine the acceleration (in m/s2) and position (in m) of the particle at t = 2.6 s and t = 5.6 s. Assume that x(t = 1 s) = 0. t = 2.6 s acceleration  m/s2 position  m ? t = 5.6 s acceleration  m/s2   position  m ?
The velocity function of a particle is given by v(t) = 3t2 – 24t + 36....
The velocity function of a particle is given by v(t) = 3t2 – 24t + 36. a) Find the equation for a(t), the acceleration. b) If s(1) = 50, find the displacement function s(t). c) When will the velocity be zero? d) Find the distance the particle travels on [0, 4].
A particle of mass m=0.2kg moves in the xy plane subject to a force such as...
A particle of mass m=0.2kg moves in the xy plane subject to a force such as that its position as a function of time is given by the vector r(t)= (3.0m/s2)t*2i+[12.0m-(2.0m/s*3)t*3]j what is the magnitude of the torque on the particle about the origin at the moment when the particle reaches the x axis?
A particle starts from the origin with velocity 5 ?̂m/s at t = 0 and moves...
A particle starts from the origin with velocity 5 ?̂m/s at t = 0 and moves in the xy plane with a varying acceleration given by ?⃗ = (2? ?̂+ 6√? ?̂), where ?⃗ is in meters per second squared and t is in seconds. i) Determine the VELOCITY and the POSITION of the particle as a function of time.
A) A particle starts from the origin with velocity 5 ?̂m/s at t = 0 and...
A) A particle starts from the origin with velocity 5 ?̂m/s at t = 0 and moves in the xy plane with a varying acceleration given by ?⃗ = (2? ?̂+ 6√? ?̂), where ?⃗ is in meters per second squared and t is in seconds. i) Determine the velocity of the particle as a function of time. ii) Determine the position of the particle as a function of time. (Explanation please )