Question

A monochromatic beam of light impinges normally on a grating and forms an image of the...

A monochromatic beam of light impinges normally on a grating and forms an image of the source slit 10 cm from the central image on a screen. The screen is 50 cm from the grating and is set parallel to it. The grating has 10,000 lines per inch. What is the wavelength of the light?

Homework Answers

Answer #1

Solution:

First off, given that you have two measurements in cm why not get the lines per inch into lines per cm? At 2.54cm/in you should get 10,000 lines/in ~ 3937 lines/cm.

Next recall the diffraction equation:

d*sin = m*

Here we will need that angle theta. You have d given as the inverse of the lines per centimeter; that is, d = 1/3937 = 2.54*10-4 cm spacing. We will solve for the m=1 (first order max). So it really comes down to trig to get that angle right?

Notice you have a triangle? 10 cm from center of screen and 50 cm away. This means you have opposite over adjacent lengths... ring a bell?! Exactly!

---> tan = 10/50 ---> = tan-1 (10/50) ~ 11.3o

So now plug all the info in and solve for lambda;

= 0.000254*sin(11.3) = 4.98 x 10^-5 cm = 498 nm (which is around bluish-green light)

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
(A)A beam of monochromatic light is incident on a single slit of width 0.650 mm. A...
(A)A beam of monochromatic light is incident on a single slit of width 0.650 mm. A diffraction pattern forms on a wall 1.35 m beyond the slit. The distance between the positions of zero intensity on both sides of the central maximum is 2.32 mm. Calculate the wavelength of the light in nm. (B)A grating with 251 grooves/mm is used with an incandescent light source. Assume the visible spectrum to range in wavelength from 400 nm to 700 nm. In...
Monochromatic light of wavelength 588 nm is incident upon a diffraction grating that contains 8500 lines...
Monochromatic light of wavelength 588 nm is incident upon a diffraction grating that contains 8500 lines spread out over a distance of 1.5 cm. a) What is the line spacing of the grating? b) At what angle does the 2nd principle maximum occur? c) If the screen is located a distance of 1.55 m from the grating, what is the linear distance on the screen that separates the central maximum with the 2nd order principle maximum?
Monochromatic light of wavelength λ1 is sent through two closely-spaced slits separated by a distance d1...
Monochromatic light of wavelength λ1 is sent through two closely-spaced slits separated by a distance d1 = 1.8 mm. A resulting interference pattern is shown on a screen L1 away. Another monochromatic light source, this one of wavelength λ2, is sent through a diffraction grating toward the same screen, resulting in a second interference pattern. The diffraction grating is a distance L2 from the screen and has 400 lines per mm etched onto it. A) Assume that L1 = L2...
A diffraction grating is made up of slits of width a with separation d. The grating...
A diffraction grating is made up of slits of width a with separation d. The grating is illuminated by monochromatic plane waves of wavelength ? at normal incidence. What is the angular width of a spectral line observed in the first order if the grating has N slits? State your answer in terms of the given variables. ??w =? Monochromatic light with wavelength 515 nm is incident on a slit with width 0.0213 mm. The distance from the slit to...
A beam of monochromatic light is incident on a single slit of width 0.640 mm. A...
A beam of monochromatic light is incident on a single slit of width 0.640 mm. A diffraction pattern forms on a wall 1.35 m beyond the slit. The distance between the positions of zero intensity on both sides of the central maximum is 2.04 mm. Calculate the wavelength of the light.
You have a diffraction grating with 3000 lines/cm. You also have a light source that emits...
You have a diffraction grating with 3000 lines/cm. You also have a light source that emits light at 2 different wavelengths, 428 nm and 707 nm, at the same time. The screen for your experiment is 1.5 meters from the diffraction grating. A. What is the line spacing for the grating? B. What is the difference in the angle of the 2nd bright fringe for each wavelength for this grating? C. Which wavelength is closer to the center of the...
Light of wavelength 600 nm shines on a diffraction grating that has 400 lines per cm....
Light of wavelength 600 nm shines on a diffraction grating that has 400 lines per cm. The light emerging from the grating hits a screen 50 cm wide so that the central maximum is exactly in the middle of the screen. Assume that the screen is 3 m from the grating. How many maxima appear on the screen? (a) 4 (b) 6 (c) 7 (d) 5 (e) 3
Parallel rays of monochromatic light with wavelength 587 nm illuminate two identical slits and produce an...
Parallel rays of monochromatic light with wavelength 587 nm illuminate two identical slits and produce an interference pattern on a screen that is 75.0 cm from the slits. The centers of the slits are 0.640 mm apart and the width of each slit is 0.434 mm. If the intensity at the center of the central maximum is 3.00×10−4 W/m2 , what is the intensity at a point on the screen that is 0.710 mm from the center of the central...
With a diffraction grating that has 3800 slits/cm, a monochromatic light source produces 2nd order bright...
With a diffraction grating that has 3800 slits/cm, a monochromatic light source produces 2nd order bright fringe at an angle of 22 (a) What is the wavelength of the source? Express this in meters and nm. (b) Draw a diagram indicating the 1st and 2nd order bright fringes. Indicate all the parameters. (c) If the screen is 0.3-m away, how far (in cm) is 2nd order bright fringe from the center? please explain
A student shines a monochratic light through a diffraction grating with 4,000 lines per cm. the...
A student shines a monochratic light through a diffraction grating with 4,000 lines per cm. the distance between the grating and the screen is 1.2 m. The student measures the distance between the first order fringe and central maxima at 0.2cm. What is the frequency of the monochromatic light? Show work.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT