Question

A block with mass m = 14 kg rests on a frictionless table and is accelerated...

A block with mass m = 14 kg rests on a frictionless table and is accelerated by a spring with spring constant k = 4399 N/m after being compressed a distance x1 = 0.468 m from the spring’s unstretched length. The floor is frictionless except for a rough patch a distance d = 2 m long. For this rough path, the coefficient of friction is μk = 0.48.

1)How much work is done by the spring as it accelerates the block?

2)What is the speed of the block right after it leaves the spring?

3)How much work is done by friction as the block crosses the rough spot?

4)What is the speed of the block after it passes the rough spot?

5)Instead, the spring is only compressed a distance x2 = 0.125 m before being released. How far into the rough path does the block slide before coming to rest?

6)What distance does the spring need to be compressed so that the block will just barely make it past the rough patch when released?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A block of mass 9.1 kg rests on a horizontal frictionless floor, and is connected to...
A block of mass 9.1 kg rests on a horizontal frictionless floor, and is connected to a vertical wall by a spring of force constant 205 N/mN/m as shown in the figure. When the spring is in its equilibrium position (neither stretched nor compressed), the block just touches a second lighter block of mass 3.4 kg at rest on the frictionless floor. The spring is now compressed by 0.12 mm (only the heavier mass is moved towards the wall) and...
A 4.00 kg block hangs by a light string that passes over a massless, frictionless pulley...
A 4.00 kg block hangs by a light string that passes over a massless, frictionless pulley and is connected to a 6.00 kg block that rests on a frictionless shelf. The 6.00 kg block is pushed agaisnt a spring to which it is not attached. THe spring has a spring constant of 180 N/m , and it is compressed by 30.0cm. Find the speed of the block after the spring is released and the 4.00 kg block has fallen a...
Block B of 40.0 kg is sitting at a frictionless horizontal floor at a height h1...
Block B of 40.0 kg is sitting at a frictionless horizontal floor at a height h1 = 40.0 m above the ground, when a second 100.0 kg block (block A), moving at an unknown speed hits and sticks to block B. After the collision, the combination slides down a hill which has friction, with a speed of 2.00 m/s. A. What was the speed of the block A before the collision? B. At the end of the path, a very...
A 0.55 kg block rests on a frictionless horizontal countertop, where it is attached to a...
A 0.55 kg block rests on a frictionless horizontal countertop, where it is attached to a massless spring whose k-value equals 23.0 N/m. Let x be the displacement, where x = 0 is the equilibrium position and x > 0 when the spring is stretched. The block is pushed, and the spring compressed, until xi = −4.00 cm. It then is released from rest and undergoes simple harmonic motion. (a) What is the block's maximum speed (in m/s) after it...
Block 2 with mass m2=5.0 kg is at rest on a frictionless surface and connected to...
Block 2 with mass m2=5.0 kg is at rest on a frictionless surface and connected to a spring constant k=64.0 N/m. The other end of the spring is connected to a wall, and the spring is initially at its equilibrium (unstretched) position. Block 1 with mass m1=10.0 is initially traveling with speed v1=4.0 m/s and collides with block 2. The collision is instantaneous, and the blocks stick together after the collision. Find the speed of the blocks immediately after the...
In the figure, block 2 (mass 1.60 kg) is at rest on a frictionless surface and...
In the figure, block 2 (mass 1.60 kg) is at rest on a frictionless surface and touching the end of an unstretched spring of spring constant 128 N/m. The other end of the spring is fixed to a wall. Block 1 (mass 1.70 kg), traveling at speed v1 = 5.80 m/s, collides with block 2, and the two blocks stick together. When the blocks momentarily stop, by what distance is the spring compressed?
A block of mass m = 3.3 kg is on an inclined plane with a coefficient...
A block of mass m = 3.3 kg is on an inclined plane with a coefficient of friction μ1 = 0.39, at an initial height h = 0.53 m above the ground. The plane is inclined at an angle θ = 44°. The block is then compressed against a spring a distance Δx = 0.13 m from its equilibrium point (the spring has a spring constant of k1 = 35 N/m) and released. At the bottom of the inclined plane...
A block of mass 0.25 kg is against a spring compressed at 0.20 m with spring...
A block of mass 0.25 kg is against a spring compressed at 0.20 m with spring constant 50 N/m. When the spring is released, the block moves along the frictionless surface until entering a region with the coefficient of kinetic friction equal to 0.30 (when the block enters the friction region it is no longer in contact with the spring ). How far,L,into the region with friction does the block slide before stopping?
A block rests on a horizontal, frictionless surface. A string is attached to the block, and...
A block rests on a horizontal, frictionless surface. A string is attached to the block, and is pulled with a force of 48.0 N at an angle θ above the horizontal. After the block is pulled through a distance of 16.0 m its speed is v = 2.10 m/s, and 40.0 J of work has been done on it.What is the mass of the block? (Answer in kg)
A block of mass m = 4.5 kg is attached to a spring with spring constant...
A block of mass m = 4.5 kg is attached to a spring with spring constant k = 610 N/m. It is initially at rest on an inclined plane that is at an angle of θ = 29° with respect to the horizontal, and the coefficient of kinetic friction between the block and the plane is μk = 0.13. In the initial position, where the spring is compressed by a distance of d = 0.19 m, the mass is at...