Question

A student drops a 0.29-kg piece of steel at 42 ∘C into a container of water...

A student drops a 0.29-kg piece of steel at 42 ∘C into a container of water at 22 ∘C. The student also drops a 0.54-kg chunk of lead into the same container at the same time. The temperature of the water remains the same.

Part A

Part complete

Was the temperature of the lead greater than, less than, or equal to 22 ∘C?

Equal to
Less than
Greater than

SubmitPrevious Answers

Correct

Part B

What was the temperature of the lead?

Express your answer to two significant figures and include appropriate units.

negative −20°cc

SubmitPrevious AnswersRequest Answer

Incorrect; Try Again; 2 attempts remaining

Homework Answers

Answer #1

here,

mass of steel peice , m1 = 0.29 kg

mass of lead chunk , m2 = 0.54 kg

a)

as the temprature of water remains the same

the final temprature of lead and steel is also same

so, heat lost by steel peice = heat gained by lead chunk

as the lead chunk gains heat

the initial temprature of lead chunk is less than 22 degree C

b)

let the initial temprature of lead be T2

using conservation of heat energy

heat lost by steel peice = heat gained by lead chunk

m1 * C1 * ( 42 - 22) = m2 * C2 * ( 22 - Ti)

0.29 * 502 * ( 20) = 0.54 * 125 * ( 22 - Ti)

Ti = - 21.1 degree C

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A student drops a 0.33-kg piece of steel at 42 ∘C into a container of water...
A student drops a 0.33-kg piece of steel at 42 ∘C into a container of water at 22 ∘C. The student also drops a 0.51-kg chunk of lead into the same container at the same time. The temperature of the water remains the same. What was the temperature of the lead?
A student drops two metallic objects into a 120-g steel container holding 150 g of water...
A student drops two metallic objects into a 120-g steel container holding 150 g of water at 25°C. One object is a 154-g cube of copper that is initially at 84°C, and the other is a chunk of aluminum that is initially at 5.0°C. To the surprise of the student, the water reaches a final temperature of 25°C, precisely where it started. What is the mass of the aluminum chunk?
A student drops two metallic objects into a 120-g steel container holding 150 g of water...
A student drops two metallic objects into a 120-g steel container holding 150 g of water at 25°C. One object is a 180-g cube of copper that is initially at 75°C, and the other is a chunk of aluminum that is initially at 5.0°C. To the surprise of the student, the water reaches a final temperature of 25°C, precisely where it started. What is the mass of the aluminum chunk in grams?
(a) A student drops two metallic objects into a 120 g steel container holding 150 g...
(a) A student drops two metallic objects into a 120 g steel container holding 150 g of water at 25◦C. One object is a 200 g cube of copper that is initially at 85◦C, and the other is a chunk of aluminum that is initially at 5◦C. To the student’s surprise, the water reaches a final temperature of 25◦C, precisely where it started. What is the mass of the aluminum chunk? Specific heats of water, steel, copper, and aluminum are...
2.50 kg of water at 90 (degrees of C) is contained in a thermally-isolated container. A...
2.50 kg of water at 90 (degrees of C) is contained in a thermally-isolated container. A 1.50 kg chunk of ice at - 10 degrees C is added to the water, in the same thermally isolated container. a.) Describe the final state of the system when it has reached thermal equilibrium, give the final temperature and the amount of ice let (if any). b.) Find the net change in entropy of the system during this process.
Some stainless steel implements, in a well insulated container, are brought into thermal equilibrium with 100...
Some stainless steel implements, in a well insulated container, are brought into thermal equilibrium with 100 g of steam (water vapour). Initially the steam was at a temperature of 1000C and the implements were at a temperature of 10oC. Lv (water) = 2256 kJ kg-1; Cwater = 4.19 kJ kg-1 K-1; C stainless-steel = 0.9 kJ kg-1 K-1 Question: Which ONE of the following statements transforming 100 g of steam at 1000C into 100 g of water at 1000C is...
Part A IN gams: In an experiment, a 0.270-kg piece of ceramic superconducting material at 17...
Part A IN gams: In an experiment, a 0.270-kg piece of ceramic superconducting material at 17 °C is placed in liquid nitrogen at its boiling point (−195.8 °C) to cool. The nitrogen is in a perfectly insulated flask that allows the gaseous N2 to escape immediately. How much mass of liquid nitrogen will be boiled away? (Take the specific heat of the ceramic material to be the same as that of glass.) Part B In m/s: A 85.0-gram lead bullet...
Thermal Storage Solar heating of a house is much more efficient if there is a way...
Thermal Storage Solar heating of a house is much more efficient if there is a way to store the thermal energy collected during the day to warm the house at night. Suppose one solar-heated home utilizes a concrete slab of area 12 m2 and 25 cm thick. Part A Part complete If the density of concrete is 2400 kg/m3, what is the mass of the slab? Express your answer to two significant figures and include appropriate units. 7200 kg SubmitPrevious...
In this question, assume that the specific heat of water is 4 ×10^3 J/(kg degrees C)...
In this question, assume that the specific heat of water is 4 ×10^3 J/(kg degrees C) and the latent heat of vaporization pf water is 2X10^6 J/Kg. If we mix 1.0 kg of water at 0 oC with 0.01 kg of steam at 100 oC, when the mixture comes to thermal equilibrium. A: a mixture of steam and water at 100 degrees C B: All water at a temperature greater than 50 degrees C C: All water at a temperature...
Part A A copper pot of mass 2.5 kg contains 5.2 litres of water (i.e. 5.2...
Part A A copper pot of mass 2.5 kg contains 5.2 litres of water (i.e. 5.2 kg) at room temperature (200C). An iron block of mass 9.4 kg is dropped into the water and when the system comes into thermal equilibrium, a temperature of 380C is measured. What is the initial temperature of the iron block? Give your answer in oC to three significant figures. Part B Iron has a specific heat that is larger than that of copper. A...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT