Question

Question 1: A rock of mass 0.453 kg falls from rest from a height of 23.0...

Question 1: A rock of mass 0.453 kg falls from rest from a height of 23.0 m into a pail containing 0.335 kg of water. The rock and water have the same initial temperature. The specific heat capacity of the rock is 1920 J/kg C°. Ignore the heat absorbed by the pail itself, and determine the rise in temperature of the rock and water in Celsius degrees.

Question 2: A 33.7-kg block of ice at 0 °C is sliding on a horizontal surface. The initial speed of the ice is 7.22 m/s and the final speed is 2.93 m/s. Assume that the part of the block that melts has a very small mass and that all the heat generated by kinetic friction goes into the block of ice, and determine the mass of ice that melts into water at 0 °C.

Homework Answers

Answer #1

By the energy conservation law:

The potential energy of the falling rock is ultimately converted into heat:

mgh = Q = mCpΔT + m' Cp' ΔT

where,

mass of rock: m = 0.453 kg

mass of water: m' = 0.335 kg

specific heat of rock: Cp = 1845 J/kg-C

specific heat of water: Cp' = 4186 J/kg-C

Temperature rise: ΔT

mgh = Q = mCpΔT + m' Cp' ΔT

mgh = (mCp + m' Cp') ΔT

0.453 * 9.81 * 23 = (0.453*1845 + 0.335*4186) ΔT

102.21 = (835.78 + 1402.31) ΔT

(102.21 / 2238.09 ) = ΔT

ΔT = 0.0456 o C

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. A 36.6-kg block of ice at 0 °C is sliding on a horizontal surface. The...
1. A 36.6-kg block of ice at 0 °C is sliding on a horizontal surface. The initial speed of the ice is 9.02 m/s and the final speed is 3.89 m/s. Assume that the part of the block that melts has a very small mass and that all the heat generated by kinetic friction goes into the block of ice, and determine the mass of ice that melts into water at 0 °C. 2. A rock of mass 0.396 kg...
A rock of mass 0.309 kg falls from rest from a height of 23.4 m into...
A rock of mass 0.309 kg falls from rest from a height of 23.4 m into a pail containing 0.444 kg of water. The rock and water have the same initial temperature. The specific heat capacity of the rock is 1880 J/kg C°. Ignore the heat absorbed by the pail itself, and determine the rise in temperature of the rock and water in Celsius degrees.
A 41.9-kg block of ice at 0 °C is sliding on a horizontal surface. The initial...
A 41.9-kg block of ice at 0 °C is sliding on a horizontal surface. The initial speed of the ice is 8.83 m/s and the final speed is 3.69 m/s. Assume that the part of the block that melts has a very small mass and that all the heat generated by kinetic friction goes into the block of ice, and determine the mass of ice that melts into water at 0 °C.
A 48.5-kg block of ice at 0 °C is sliding on a horizontal surface. The initial...
A 48.5-kg block of ice at 0 °C is sliding on a horizontal surface. The initial speed of the ice is 8.24 m/s and the final speed is 4.08 m/s. Assume that the part of the block that melts has a very small mass and that all the heat generated by kinetic friction goes into the block of ice, and determine the mass of ice that melts into water at 0 °C.
1. A copper block with a mass 1.32 kg is given an initial speed of 2.7...
1. A copper block with a mass 1.32 kg is given an initial speed of 2.7 m/s on a rough horizontal surface. Because of friction, the block finally comes to rest. Assume that 70.8 % of the initial kinetic energy is absorbed by the block in form of heat, what is the change in temperature (in - do not enter units) of the block? Data: cCu=387 2. A 2.62g aluminum bullet at 32.0°C is fired at a speed of 275...
A rock with mass m = 2.60 kg falls from rest in a viscous medium. The...
A rock with mass m = 2.60 kg falls from rest in a viscous medium. The rock is acted on by a net constant downward force of F = 19.8 N (a combination of gravity and the buoyant force exerted by the medium) and by a fluid resistance force f=kv, where v is the speed in m/s and k = 2.69 N×s/m a)Find the initial acceleration a0. b) Find the acceleration when the speed is 3.50 m/s . c)Find the...
An insulated beaker with negligible mass contains liquid water with a mass of 0.230 kg and...
An insulated beaker with negligible mass contains liquid water with a mass of 0.230 kg and a temperature of 66.4 ∘C . a)How much ice at a temperature of -23.3 ∘C must be dropped into the water so that the final temperature of the system will be 23.0 ∘C ? Take the specific heat of liquid water to be 4190 J/kg⋅K , the specific heat of ice to be 2100 J/kg⋅K , and the heat of fusion for water to...
An insulated beaker with negligible mass contains liquid water with a mass of 0.350 kg and...
An insulated beaker with negligible mass contains liquid water with a mass of 0.350 kg and a temperature of 70.6 ∘C . How much ice at a temperature of -16.3 ∘C must be dropped into the water so that the final temperature of the system will be 23.0 ∘C ? Take the specific heat of liquid water to be 4190 J/kg⋅K , the specific heat of ice to be 2100 J/kg⋅K , and the heat of fusion for water to...
A small piece of ice (mass = 0.10 kg) at an initial temperature of 0oC is...
A small piece of ice (mass = 0.10 kg) at an initial temperature of 0oC is placed within glass of water, where the water's mass is 0.40 kg and it is at an initial temperature of 30oC.   (a) What is the final temperature of the system when thermal equilibrium is achieved assuming no heat leaks? (b) What is the entropy change of just the ice only while it melts? The latent heat of fusion and specific heats of ice and...
A lead bullet of mass 3.43 g and temperature 28.6C traveling at an unknown speed gets...
A lead bullet of mass 3.43 g and temperature 28.6C traveling at an unknown speed gets embedded in a block of ice of temperature 00C. Calculate the initial speed of the bullet if 0.500 g of ice melts. Assume that the entire kinetic energy of the bullet is converted into heat, that is transferred to the ice. Also, do not forget that the bullet cools down from 28.6C to 0C. Express your answer in m/s
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT