Question

Two blocks are connected by an ideal cord that does not stretch, the cord passes over...

Two blocks are connected by an ideal cord that does not stretch, the cord passes over an ideal pulley. The weight of the heavier block is 1.2 N larger than the weight of the lighter block. The lighter block has the acceleration 4.4 m/s2 up. What is the weight of the heavier block?

Homework Answers

Answer #1

Gravitational acceleration = g = 9.81 m/s

Mass of the lighter block = m1

Mass of the heavier block = m2

Tension in the cord = T

Acceleration of the blocks = a = 4.4 m/s2

The weight of the heavier block is 1.2 N larger than the weight of the lighter block.

(m2 - m1)g = 1.2 N

m2 - m1 = 0.1223

From the free body diagram,

T - m1g = m1a

T = m1g + m1a

m2g - T = m2a

m2g - m1g - m1a = m2a

(m2 - m1)g = (m1 + m2)a

(m1 + m2)(4.4) = 1.2

m1 + m2 = 0.2727

m2 - m1 = 0.1223

Adding these two equations we get,

2m2 = 0.395

m2 = 0.1975 kg

Weight of the heavier block = m2g = (0.1975)(9.81) = 1.937 N

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The figure shows two blocks connected by a cord (of negligible mass) that passes over a...
The figure shows two blocks connected by a cord (of negligible mass) that passes over a frictionless pulley (also of negligible mass). The arrangement is known as Atwood's machine. Block 1 has mass m1 = 2.20 kg; block 2 has mass m2 = 4.60 kg. What are (a) the magnitude of the blocks’ acceleration and (b) the tension in the cord?
Two blocks are connected by a string that passes over a massless, frictionless pulley, as shown...
Two blocks are connected by a string that passes over a massless, frictionless pulley, as shown in the figure. Block A, with a mass mA = 2.00 kg, rests on a ramp measuring 3.0 m vertically and 4.0 m horizontally. Block B hangs vertically below the pulley. Note that you can solve this exercise entirely using forces and the constant-acceleration equations, but see if you can apply energy ideas instead. Use g = 10 m/s2. When the system is released...
In the figure, two blocks are shown with an inclined plane. The two blocks are connected...
In the figure, two blocks are shown with an inclined plane. The two blocks are connected by a massless string strung over a massless pulley. The mass of Block #1 is 3.57 kg and that of Block #2 is 11.0 kg. The angle θ of the incline is 43.0 degrees. The plane is NOT smooth and has a coefficient of static friction of 0.570 and a coefficient of kinetic friction of 0.240. Taking the positive direction to be up the...
Two blocks with masses M1 and M2 are connected by a massless string that passes over...
Two blocks with masses M1 and M2 are connected by a massless string that passes over a massless pulley as shown. M1 has a mass of 2.25 kg and is on an incline of θ1=46.5∘ with coefficient of kinetic friction μ1=0.205. M2 has a mass of 6.05 kg and is on an incline of θ2=33.5∘ with coefficient of kinetic friction μ2=0.105. The two‑block system is in motion with the block of mass M2 sliding down the ramp. Find the magnitude...
An Atwood's machine consists of blocks of masses m1 = 12.0 kg and m2 = 22.0...
An Atwood's machine consists of blocks of masses m1 = 12.0 kg and m2 = 22.0 kg attached by a cord running over a pulley as in the figure below. The pulley is a solid cylinder with mass M = 7.60 kg and radius r = 0.200 m. The block of mass m2 is allowed to drop, and the cord turns the pulley without slipping. Two objects, blocks labeled m1 and m2, are connected to a cord which is hung...
Two blocks of mass 3.5 kg, and 8.0 kg are connected by a massless string that...
Two blocks of mass 3.5 kg, and 8.0 kg are connected by a massless string that passes over a frictionless pulley. The inclines are frictionless. Find (a) the magnitude of acceleration of each block and (b) the tension in the string. answer should be: (2.45m/s2 , 30.6 N) please show me how to get those answers
Two blocks are connected by a light string passing over a pulley. The inclined surfaces are...
Two blocks are connected by a light string passing over a pulley. The inclined surfaces are frictionless, and the effects of the pulley can be ignored. The value of m1 = m2 = 1.0 kg and θ2 = 41.6 o. If the blocks accelerate to the right with acceleration a = 0.250 m/s2, what is the value of θ1?
Two blocks with masses M1 and M2 are connected by a massless string that passes over...
Two blocks with masses M1 and M2 are connected by a massless string that passes over a massless pulley as shown. M1 has a mass of 2.25 kg and is on an incline of 49.5° with coefficient of kinetic friction ?1 = 0.205. M2 has a mass of 5.45 kg and is on an incline of 31.5° with coefficient of kinetic friction ?2 = 0.105. Find the magnitude of the acceleration of M2 down the incline.
The two blocks shown are hung by a light string that does not stretch or slip...
The two blocks shown are hung by a light string that does not stretch or slip against the massive pulley. The blocks have mass of 3.0 kg and 5.7 kg, and the pulley has a radius of r = 0.26 m and a mass of m = 12.91 kg . By the time the 5.7 kg mass has fallen 1.52 m starting from rest, find the speed of each block. (Assume the pulley is in the shape of a uniform...
two blocks are hung by a light string that does not stretch or slip against the...
two blocks are hung by a light string that does not stretch or slip against the massive pulley. The blocks have mass of 3.0 kg and 5.7 kg and the pulley has a radius of r= 0.16 m and a mass of m= 13.78 kg. By the time the 5.7 kg mass has fallen 1.64;m starting from rest, find the speed of each block ( Assume the pulley is in the shape of a uniform solid disk ( I= 1/2mr2...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT