Question

A 0.9 kg block attached to a spring of force constant 13.1 N/m oscillates with an...

A 0.9 kg block attached to a spring of force constant 13.1 N/m oscillates with an amplitude of 3 cm.

A) Find the maximum speed of the block. Answer in units m/s.

B) Find the speed of the block when it is 1.5 cm from the equilibrium position. Answer in units of m/s.

C) Find its acceleration at 1.5 cm from the equilibrium position. Answer in units of m/s2.

D) Find the time it takes for the block to move from x = 0 to x= 1.5cm. Answer in units of s.

Homework Answers

Answer #1

The position of anything undergoing simple harmonic motion could be described by

x = A sin(ωt) [1]

Velocity and acceleration can be derived by taking consecutive derivatives with respect to time.

v = Aω cos(ωt) [2]

a = -Aω² sin(ωt) [3]

For a mass-spring system,

ω² = k/m [4]

i.

Since the maximum of a cosine function is 1, from [2]

v = Aω

v = A sqrt(k/m) (from [4])

v = (0.03 m) sqrt[(13.1 N/m)/(0.9 kg)]

v = 0.114 m/s

ii.

x = A sin(ωt) [1]

0.015 m = (0.03 m) sin(ωt)

ωt = π/6

v = Aω cos(ωt) [2]

v = (0.114 m/s) cos(π/6) (from i.)

v = 0.0987 m/s

iii.

a = -Aω² sin(ωt) [3]

a = -xω² (from [1])

a = -x(k/m) (from [4])

a = -(0.03 m)[(13.1 N/m)/(0.9 kg)]

a = -0.437 m/s²

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A block of mass m = 0.53 kg attached to a spring with force constant 119...
A block of mass m = 0.53 kg attached to a spring with force constant 119 N/m is free to move on a frictionless, horizontal surface as in the figure below. The block is released from rest after the spring is stretched a distance A = 0.13 m. (Indicate the direction with the sign of your answer. Assume that the positive direction is to the right.) The left end of a horizontal spring is attached to a vertical wall, and...
A 0.450 kg object attached to a spring with a force constant of 8.00 N/m vibrates...
A 0.450 kg object attached to a spring with a force constant of 8.00 N/m vibrates in simple harmonic motion with an amplitude of 12.0 cm. (Assume the position of the object is at the origin at t = 0.) (a) Calculate the maximum value (magnitude) of its speed and acceleration. ___cm/s ___cm/s2 (b) Calculate the speed and acceleration when the object is 9.00 cm from the equilibrium position. ___cm/s ___cm/s2 (c) Calculate the time interval required for the object...
A 170 g block attached to a spring with spring constant 3.0 N/m oscillates horizontally on...
A 170 g block attached to a spring with spring constant 3.0 N/m oscillates horizontally on a frictionless table. Its velocity is 25 cm/s when x0 = -5.6 cm . What is the amplitude of oscillation? What is the block's maximum acceleration? What is the block's position when the acceleration is maximum? What is the speed of the block when x1 = 2.6 cm ?
A 120 g block attached to a spring with spring constant 3.0 N/m oscillates horizontally on...
A 120 g block attached to a spring with spring constant 3.0 N/m oscillates horizontally on a frictionless table. Its velocity is 17 cm/s when x0 = -4.5 cm . What is the amplitude of oscillation? What is the block's maximum acceleration? What is the block's position when the acceleration is maximum? What is the speed of the block when x1 = 2.9 cm ?
A 100 g block attached to a spring with spring constant 2.7 N/m oscillates horizontally on...
A 100 g block attached to a spring with spring constant 2.7 N/m oscillates horizontally on a frictionless table. Its velocity is 22 cm/s when x0 = -5.6 cm . What is the amplitude of oscillation? What is the block's maximum acceleration? What is the block's position when the acceleration is maximum? What is the speed of the block when x1 = 2.9 cm ?
A 0.580-kg object attached to a spring with a force constant of 8.00 N/m vibrates in...
A 0.580-kg object attached to a spring with a force constant of 8.00 N/m vibrates in simple harmonic motion with an amplitude of 13.0 cm. (Assume the position of the object is at the origin at t = 0.) (a) Calculate the maximum value of its speed. cm/s (b) Calculate the maximum value of its acceleration. cm/s2 (c) Calculate the value of its speed when the object is 11.00 cm from the equilibrium position. cm/s (d) Calculate the value of...
A 0.560-kg object attached to a spring with a force constant of 8.00 N/m vibrates in...
A 0.560-kg object attached to a spring with a force constant of 8.00 N/m vibrates in simple harmonic motion with an amplitude of 12.6 cm. (Assume the position of the object is at the origin at t = 0.) (a) Calculate the maximum value of its speed. cm/s (b) Calculate the maximum value of its acceleration. cm/s2 (c) Calculate the value of its speed when the object is 10.60 cm from the equilibrium position. cm/s (d) Calculate the value of...
A 0.560-kg object attached to a spring with a force constant of 8.00 N/m vibrates in...
A 0.560-kg object attached to a spring with a force constant of 8.00 N/m vibrates in simple harmonic motion with an amplitude of 11.4 cm. (Assume the position of the object is at the origin at t = 0.) (a) Calculate the maximum value of its speed. cm/s (b) Calculate the maximum value of its acceleration. cm/s2 (c) Calculate the value of its speed when the object is 9.40 cm from the equilibrium position. cm/s (d) Calculate the value of...
A 200 g block attached to a spring with spring constant 2.5 N/m oscillates horizontally on...
A 200 g block attached to a spring with spring constant 2.5 N/m oscillates horizontally on a frictionless table. Its velocity is 15 cm/s when x0 = -5.6 cm . a. What is the amplitude of oscillation? b. What is the block's maximum acceleration? c. What is the block's position when the acceleration is maximum? d. What is the speed of the block when x1x1x_1 = 3.0 cm ?
Part A A block of unknown mass is attached to a spring with a spring constant...
Part A A block of unknown mass is attached to a spring with a spring constant of 5.50 N/m and undergoes simple harmonic motion with an amplitude of 10.0 cm. When the block is halfway between its equilibrium position and the end point, its speed is measured to be 28.0 cm/s. (a) Calculate the mass of the block. ________kg (b) Calculate the period of the motion. ________s (c) Calculate the maximum acceleration of the block. ________m/s2 Part B A block-spring...