Question

A 1.50-m string of weight 0.0125 N is tied to the ceiling at its upper end,...

A 1.50-m string of weight 0.0125 N is tied to the ceiling at its upper end, and the lower end supports a weight ?. (Ignore the very small variation in tension along the length of the string that is produced by the weight of the string.) When you pluck the string slightly, you notice that the waves traveling up the string have amplitude 8.00 mm, wavelength 0.040 m and speed 12.0 m/s.

Assuming that up is the positive direction, which of the following is the correct equation that describes the wave?

What is the maximum speed of oscillation of a point on the string located 0.50 m above the weight ??

What is the weight, ??

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 1.40-m string of weight 0.0124 N is tied to the ceiling at its upper end,...
A 1.40-m string of weight 0.0124 N is tied to the ceiling at its upper end, and the lower end supports a weight W. Neglect the very small variation in tension along the length of the string that is produced by the weight of the string. When you pluck the string slightly, the waves traveling up the string obey the equation y(x,t)=(8.50mm)cos(172rad⋅m−1x−2730rad⋅s−1t) Assume that the tension of the string is constant and equal to W. a) How much time does...
A 1.20 mm string of weight 0.0130 N is tied to the ceiling at its upper...
A 1.20 mm string of weight 0.0130 N is tied to the ceiling at its upper end, and the lower end supports a weight W. Ignore the very small variation in tension along the length of the string that is produced by the weight of the string. When you pluck the string slightly, the waves traveling up the string obey the equation y(x,t)=(8.50mm)cos(172rad/mx−4830rad/st) Assume that the tension of the string is constant and equal to W. How much time does...
Transverse waves traveling along a string have the following properties. Amplitude of the wave = 2.30...
Transverse waves traveling along a string have the following properties. Amplitude of the wave = 2.30 mm Wavelength of the wave = 0.128 m Speed of the wave = 328 m/s a) Determine the time for a particle of the string to move through a total distance of 1.50 km. in s b) If the string is held under a tension of 982 N, determine its linear density. in g/m
A uniform string of length l and mass m hangs by one end from the ceiling....
A uniform string of length l and mass m hangs by one end from the ceiling. (a) Prove the speed of sound in the string a distance y above the bottom is vs = √gy, where g is the acceleration due to gravity. Hint: The tension in the string is due to string’s mass under the influence of gravity, and that tension increases as you go higher up the string. (b) You quickly and gently hit the bottom of the...
A uniform string of length 20.0 m and weight 0.29 N is attached to the ceiling....
A uniform string of length 20.0 m and weight 0.29 N is attached to the ceiling. A weight of 2.00 kN hangs from its lower end. The lower end of the string is suddenly displaced horizontally. How long does it take the resulting wave pulse to travel to the upper end? Can anyone explain this with steps and explain their steps? Thank you!
a 2kg weight is tied to the end of a piece of string of length L=7m...
a 2kg weight is tied to the end of a piece of string of length L=7m and then whirled around in a horizontal cirlce at ever increasing angular velocity w until the string breaks when w = 3rad/sec, and the weight flies off at a tangent a.)What is the speed v of the weight when this happens b.)what is the breaking strain of the string?(ie. what is the tension when the string breaks?) c.) if a new piece of string...
A traveling wave on a string oscillates with an amplitude of 0.080m and a frequency of...
A traveling wave on a string oscillates with an amplitude of 0.080m and a frequency of 2.5Hz. The speed of the waves on the string is 10 m/s. At t=0, the end from which the oscillations originate has a vertical displacement of 0m. a) Find the angular frequency, period, wavelength, and wave number. b) Write a wave function describing the wave. c) The linear mass density μ of the string is 0.300kg/m, and tension in the spring is maintained at...
(1A) A vertical spring with a spring constant of 8 N/m and damping constant of 0.05...
(1A) A vertical spring with a spring constant of 8 N/m and damping constant of 0.05 kg/s has a 2 kg mass suspended from it. A harmonic driving force given by F = 2 cos(1.5 t ) is applied to the mass. What is the natural angular frequency of oscillation of the mass? What is the amplitude of the oscillations at steady state? Does this amplitude decrease with time due to the damping? Why or why not? (1B) Two traveling...
A ball with a mass of 1.50 kg is attached to the end of a string...
A ball with a mass of 1.50 kg is attached to the end of a string that is 0.400 m in length. You swing the ball so that it swings in a vertical circle, traveling at a speed of 4.80 m/s at the top of the circle. (a) Draw the free-body diagram of the ball. Make sure you label all your vectors and clearly indicate their direction. (b) What is the tension in the string when the ball is at...
A string with linear density 1.70 g/m is stretched along the positive x-axis with tension 18.0...
A string with linear density 1.70 g/m is stretched along the positive x-axis with tension 18.0 N. One end of the string, at x = 0.00 m, is tied to a hook that oscillates up and down at a frequency of 177.0Hz with a maximum displacement of 0.695 mm. At t = 0.00 s, the hook is at its lowest point. What is the wave speed on the string What is the wavelength?