Question

An object is placed 246 cm to the left of a positive lens of focal length...

An object is placed 246 cm to the left of a positive lens of focal length +17.9 cm. A second positive lens, of focal length +35.3 cm is placed to the right of the first lens with a separation of 101 cm. Calculate the position of the final image relative to the second lens. (Report a positive number if the image is to the right of the second lens, and a negative number if it is to the left of the second lens. Assume both lenses are thin spherical lenses).

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An object is placed 187 cm to the left of a positive lens of focal length...
An object is placed 187 cm to the left of a positive lens of focal length +100 cm. A second positive lens, of focal length +150 cm is placed to the right of the first lens with a separation of 83.4 cm. Calculate the position of the final image relative to the second lens. (Report a positive number if the image is to the right of the second lens, and a negative number if it is to the left of...
An object is placed 160 cm to the left of a positive lens of focal length...
An object is placed 160 cm to the left of a positive lens of focal length +27.1 cm. A second positive lens, of focal length +36.5 cm is placed to the right of the first lens with a separation of 116 cm. Calculate the position of the final image relative to the second lens. (Report a positive number if the image is to the right of the second lens, and a negative number if it is to the left of...
An object is placed 4949 cm to the left of a converging lens of focal length...
An object is placed 4949 cm to the left of a converging lens of focal length 1717 cm. A diverging lens of focal length −20−20 cm is located 1717 cm to the right of the first lens. (Consider the lenses as thin lenses). a) Where is the final image with respect to the second lens?
An object is placed 20.0 cm to the left of a converging lens with focal length...
An object is placed 20.0 cm to the left of a converging lens with focal length of 10.0cm. A second identical, lens is placed to the right of the first lens and moved until the final image produced is identical in size and orientation to the object. What is the separation between the two lenses?
An object is placed 230 cm to the left of a positive lens of focal length...
An object is placed 230 cm to the left of a positive lens of focal length 50.0 cm. A "mystery" lens is placed 140 cm to the left of original lens (so that it is located between the original lens and the object). The final image of this two-lens system appears inverted on a screen located 300.0 cm behind (to the right) of the original lens. Calculate the focal length of the "mystery" lens.
An object is placed 30 cm to the left of a converging lens of focal length...
An object is placed 30 cm to the left of a converging lens of focal length 10 cm. A diverging lens of focal length -15 cm is 20 cm to the right of the converging lens. a) Where is the image created by the first lens relative to the first lens? b) Is it real or virtual? c) Where is the final image relative to the second lens? d) Is it real or virtual? e) What is the final lateral...
An object is placed 19 cm to the left of a converging lens of focal length...
An object is placed 19 cm to the left of a converging lens of focal length 26 cm. A diverging lens of focal length 10 cm is 25 cm to the right of the converging lens. Find the position and magnification of the final image. ______cm magnification_______X
Two converging lenses are placed 40.0 cm apart. The focal length of the lens on the...
Two converging lenses are placed 40.0 cm apart. The focal length of the lens on the right is 21.0 cm , and the focal length of the lens on the left is 10.5 cm . An object is placed to the left of the 10.5 cm focal-length lens. A final image from both lenses is inverted and located halfway between the two lenses. How far to the left of the 10.5 cmcm focal-length lens is the original object?
Two lenses are placed along the x axis, with a diverging lens of focal length −8.70...
Two lenses are placed along the x axis, with a diverging lens of focal length −8.70 cm on the left and a converging lens of focal length 17.0 cm on the right. When an object is placed 14.0 cm to the left of the diverging lens, what should the separation s of the two lenses be if the final image is to be focused at x = ∞?
Two lenses are placed along the x axis, with a diverging lens of focal length −7.40...
Two lenses are placed along the x axis, with a diverging lens of focal length −7.40 cm on the left and a converging lens of focal length 15.0 cm on the right. When an object is placed 14.0 cm to the left of the diverging lens, what should the separation s of the two lenses be if the final image is to be focused at x = ∞?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT