Question

803 cal of heat is added to 5.00 g ice at –20.0 °C. What is the...

803 cal of heat is added to 5.00 g ice at –20.0 °C. What is the final temperature of the water?


SPecific heat H2O(s)= 2.087 J/(g*C)

Specific heat H2O(l)=4.184 J/(g*C)

Heat of fusion= 333.6 J/g


Homework Answers

Answer #1

heat given = > 803 cal =3361.358 joule

The heat required to raise the temperature of ice from -20 °C to 0 °C Use the formula

q1 = mcΔT = 5*2.09*( 0--20) =209 J

Step 2: Heat required to convert 0 °C ice to 0 °C water

q2 = m·ΔHf = 5*334 =1670 J

Heat required to raise the temperature of 0 °C water to 100 °C water

q3 = mcΔT = 5*4.18*( 100-0) =2090

total heat =209+1670 +2090 =3969

but we provided  3361.358 so water temperature will be less than 100 °C

after water become 0-degree water remaining heat will raise its temperature

remaining heat = 3361.358 - ( 209 +1670 ) = 1482.358 J

so

1482.358 J = mcΔT  = 5*4.18* ( T-0 ) 
1482.358  =  5*4.18*  T 

T =  1482.358 /(5*4.18)

T = 70.9262201 degree answer

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1) A certain substance has a heat of vaporization of 36.02 kJ/mol.36.02 kJ/mol. At what Kelvin...
1) A certain substance has a heat of vaporization of 36.02 kJ/mol.36.02 kJ/mol. At what Kelvin temperature will the vapor pressure be 3.503.50 times higher than it was at 347 K? 2) A total of 767 cal767 cal of heat is added to 5.00 g5.00 g of ice at −20.0 °C.−20.0 °C. What is the final temperature of the water? Specific heat of H2O(s)H2O(s) 2.087 J/(g⋅°C)2.087 J/(g⋅°C) Specific heat of H2O(l)H2O(l) 4.184 J/(g⋅°C)4.184 J/(g⋅°C) Heat of fusion for H2OH2O 333.6...
Two 20.0-g ice cubes at –20.0 °C are placed into 285 g of water at 25.0...
Two 20.0-g ice cubes at –20.0 °C are placed into 285 g of water at 25.0 °C. Assuming no energy is transferred to or from the surroundings, calculate the final temperature, Tf, of the water after all the ice melts. heat capacity of H2O(s) is 37.7 J/mol*K heat capacity of H2O(l) is 75.3 J/mol*K enthalpy of fusion of H20 is 6.01 kJ/mol
Two 20.0-g ice cubes at –13.0 °C are placed into 275 g of water at 25.0...
Two 20.0-g ice cubes at –13.0 °C are placed into 275 g of water at 25.0 °C. Assuming no energy is transferred to or from the surroundings, calculate the final temperature of the water after all the ice melts. heat capacity of H2O(s) 37.7 J/(mol*k) heat capacity of H2O(l) 75.3 J/(mol*k) enthalpy of fusion of H2O 6.01 kJ/mol
Suppose that 100.0 g of ice at 0 degrees Celsius are added to 300.0 g of...
Suppose that 100.0 g of ice at 0 degrees Celsius are added to 300.0 g of water at 25.00 degrees Celsius. Is this sufficient ice to lower the temperature of the water to 5.00 degrees Celsius and still have ice remaining? Calculate the energy (heat), which must be removed from water to achieve the desired temperature change, and then prove that there is (is not) sufficient ice to cool the water. Use the specific heat capacity of water (4.184 J/g-*C)...
suppose the specific heat of ice and water is 0.49 cal/g. C ( C represent degree...
suppose the specific heat of ice and water is 0.49 cal/g. C ( C represent degree Celsius) and 1.0 cal/g. C. the latent heat of fusion of water is 80 cal/g. how much heat (in calories) is required for 100 grams of ice with an initial temperature of -10 C to a. raise the ice's temperature to the melting point? b. then completely melt the ice to water? c. finally, raise the water's temperature to 50 C?
Quantity per gram per mole Enthalpy of fusion 333.6 J/g 6010. J/mol Enthalpy of vaporization 2257...
Quantity per gram per mole Enthalpy of fusion 333.6 J/g 6010. J/mol Enthalpy of vaporization 2257 J/g 40660 J/mol Specific heat of solid H2O (ice) 2.087 J/(g·°C) * 37.60 J/(mol·°C) * Specific heat of liquid H2O (water) 4.184 J/(g·°C) * 75.37 J/(mol·°C) * Specific heat of gaseous H2O (steam) 2.000 J/(g·°C) * 36.03 J/(mol·°C) * At 1 atm, how much energy is required to heat 49.0 g of H2O(s) at − 18.0 °C to H2O(g) at 135.0 °C? Heat transfer...
You add 50.0 g of ice initially at ‒20.0 °C to 1.00 x 102 mL warm...
You add 50.0 g of ice initially at ‒20.0 °C to 1.00 x 102 mL warm water at 67.0 °C. When all the ice melts, the water temperature is found to be somewhere above 0 °C. Calculate the final temperature of the water. [ Cice = 2.06 J/g⋅°C; CH2O = 4.184 J/g⋅°C; dH2O = 1.00 g/mL; heat of fusion of water = 333 J/g ]
The constants for H2O are shown here: Specific heat of ice: sice=2.09 J/(g⋅∘C) Specific heat of...
The constants for H2O are shown here: Specific heat of ice: sice=2.09 J/(g⋅∘C) Specific heat of liquid water: swater=4.18 J/(g⋅∘C) Enthalpy of fusion (H2O(s)→H2O(l)): ΔHfus=334 J/g Enthalpy of vaporization (H2O(l)→H2O(g)): ΔHvap=2250 J/g How much heat energy, in kilojoules, is required to convert 36.0 g of ice at −18.0 ∘C to water at 25.0 ∘C ?
A 24 g block of ice is cooled to −63◦C. It is added to 572 g...
A 24 g block of ice is cooled to −63◦C. It is added to 572 g of water in a 98 g copper calorimeter at a temperature of 30◦C. Find the final temperature. The specific heat of copper is 387 J/kg ·◦C and of ice is 2090 J/kg ·◦C. The latent heat of fusion of water is 3.33 × 105 J/kg and its specific heat is 4186 J/kg·◦C. Answer in units of ◦C.
A 31 g block of ice is cooled to −90◦C. It is added to 591 g...
A 31 g block of ice is cooled to −90◦C. It is added to 591 g of water in an 65 g copper calorimeter at a temperature of 26◦C. Find the final temperature. The specific heat of copper is 387 J/kg · ◦C and of ice is 2090 J/kg · ◦C . The latent heat of fusion of water is 3.33 × 105 J/kg and its specific heat is 4186 J/kg · ◦C . Answer in units of ◦C.