Question

I want you to compare particle in a box with the Bohr atom. For the particle...

I want you to compare particle in a box with the Bohr atom. For the particle in the box you can assume the size is .5x10^-10 m and the particle that is trapped is an electron. For the Bohr atom consider a hydrogen atom.

a.) What is the energy of photon emitted when the electron drops from 3->2 and 2->1 in the particle in a box?

b.) What is the energy of photon emitted when the electron drops from 3->2 and 2->1 in the Hydrogen atom.

c.) Draw the first 3 wavefunctions (ground state, 1st excited, 2nd excited) for a particle in a box)

d.) Why are the energy levels so different? What is the fundamental change in between these two situations?

Homework Answers

Answer #1

the difference in energy is clearly seen in the formulation where the dependency of quantum number plays significant role

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Answer the following questions using the Bohr model of the hydrogen atom. a) A hydrogen atom...
Answer the following questions using the Bohr model of the hydrogen atom. a) A hydrogen atom is the n = 3 excited state when its electron absorbs a photon of energy 4.40 eV. Draw a diagram roughly to scale, of relevant energy levels for this situation. Make sure to show and label the initial energy of the H atom in the n=3 state, the energy level at which this atom loses its electron, and kinetic energy of the electron. b)What...
Exercise: Consider the Bohr Theory Hydrogen atom. a) how much energy is needed to cause a...
Exercise: Consider the Bohr Theory Hydrogen atom. a) how much energy is needed to cause a transition of an electron from the 2nd excited state to the 3rd excited state? Remember the 2nd excited state corresponds to n=3, etc). b) what wavelength photon just has enough energy to initiate the transition?
An electron is trapped in an infinite one-dimensional well of width = L. The ground state...
An electron is trapped in an infinite one-dimensional well of width = L. The ground state energy for this electron is 3.8 eV. a) Calculated energy of the 1st excited state. b) What is the wavelength of the photon emitted between 1st excited state and ground states? c) If the width of the well is doubled to 2L and mass is halved to m/2, what is the new 3nd state energy? d) What is the photon energy emitted from the...
Singly ionized helium (He+) atom/ion has a single remaining electron and a nuclear charge of +2?...
Singly ionized helium (He+) atom/ion has a single remaining electron and a nuclear charge of +2? (twice that of a proton). Using the Bohr model with appropriate modifications, estimate a) the radius and b) the total energy (in electron volts) of such an atom in its first excited level. c) When the state of this atom changes from the first excited level to the ground level, a photon is emitted in the process. Estimate the energy (in electron volts) of...
In the Bohr model of the atom, what is true about the light emitted by an...
In the Bohr model of the atom, what is true about the light emitted by an atom? 1. The emitted photon’s frequency is the classic frequency at which an electron vibrates. 2. An electron accelerating around its orbit continuously emits radiation. 3. None of these 4. The energy of the emitted photon is equal to the difference in energy between the two orbits.
1. a. A photon is absorbed by a hydrogen atom causing an electron to become excited...
1. a. A photon is absorbed by a hydrogen atom causing an electron to become excited (nf = 6) from the ground state electron configuration. What is the energy change of the electron associated with this transition? b. After some time in the excited state, the electron falls from the n = 6 state back to its ground state. What is the change in energy of the electron associated with this transition? c. When the electron returns from its excited...
An electron in an excited state of a hydrogen atom emits two photons in succession, the...
An electron in an excited state of a hydrogen atom emits two photons in succession, the first at 3037 nm and the second at 94.92 nm, to return to the ground state (n=1). For a given transition, the wavelength of the emitted photon corresponds to the difference in energy between the two energy levels. What were the principal quantum numbers of the initial and intermediate excited states involved?
Calculate the wavelength (in nanometers) of a photon emitted by a hydrogen atom when its electron...
Calculate the wavelength (in nanometers) of a photon emitted by a hydrogen atom when its electron drops from the n = 4 to n = 2 state. Consider the following energy levels of a hypothetical atom: E4 −1.61 × 10−19 J E3 −7.51 × 10−19 J E2 −1.35 × 10−18 J E1 −1.45 × 10−18 J (a) What is the wavelength of the photon needed to excite an electron from E1 to E4? ____ ×10m (b) What is the energy...
The electron in a hydrogen atom falls from an excited energy level to the ground state...
The electron in a hydrogen atom falls from an excited energy level to the ground state in two steps, causing the emission of photons with wavelengths of 656.5 nm and 121.6 nm (So the in the first step the 656.5 nm photon is emitted and in the second step the 121.6 nm photon is emitted). What is the principal quantum number (ni) of the initial excited energy level from which the electron falls?
I have solved some of the questions and the answers are the following 1. 1.62 *...
I have solved some of the questions and the answers are the following 1. 1.62 * 10^-4 eV 2. 0.00765432 m 4. 5.909 * 10^-3 m 5. 3.33 * 10^-10 m So the only questions missing are question #3 and question #6. If when solving questions 1, 2, 4 and 5, you do not get the same values as posted here, please do not even bother to submit question 3 and question 6 because you most likely have it wrong...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT