Question

An unknown ideal gas enters a 25 cm-diameter pipe steadily at 250 kPa and 47C with...

An unknown ideal gas enters a 25 cm-diameter pipe steadily at 250 kPa and 47C with a velocity of 5 m/s. The ideal gas gains heat as it flows and leaves the pipe at 77C and 225 kPa. The gas constant of the ideal gas is R=0.285 kJ/kg.K. Determine:
a) the volume flow rate at the inlet

b) the mass flow rate

c) the velocity at the exit

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Refrigerant-134a enters a diffuser steadily as saturated vapour at 600 kPa with a velocity of 160...
Refrigerant-134a enters a diffuser steadily as saturated vapour at 600 kPa with a velocity of 160 m/s, and it leaves at 700 kPa and 40°C. The refrigerant is gaining heat at a rate of 2 kJ/s as it passes through the diffuser : determine (a- the exit velocity (b- the mass flow rate of the refrigerant. If the exit area is twice the inlet area (A2=2A1),
Nitrogen gas at 50 kPa and 7°C enters an adiabatic diffuser steadily with a velocity of...
Nitrogen gas at 50 kPa and 7°C enters an adiabatic diffuser steadily with a velocity of 180 m/s and leaves at 109 kPa and 22°C. Determine (a) the exit velocity of the nitrogen and (b) the ratio of the inlet to exit area A1/A2
Nitrogen gas at 60 kPa and 78C enters an adiabatic diffuser steadily with a velocity of...
Nitrogen gas at 60 kPa and 78C enters an adiabatic diffuser steadily with a velocity of 275 m/s and leaves at 85 kPa and 278C. Determine (a) the exit velocity of the nitrogen and (b) the ratio of the inlet to exit area A1/A2. Reconsider Using EES (or other) software, investigate the effect of the inlet veloc- ity on the exit velocity and the ratio of the inlet-to-exit area. Let the inlet velocity vary from 210 to 350 m/s. Plot...
Steam enters a long, horizontal pipe with an inlet diameter of d1 = 16 cm at...
Steam enters a long, horizontal pipe with an inlet diameter of d1 = 16 cm at 2 MPa and 300 degrees Celsius with a velocity of 2.5 m/s. Farther downstream, the conditions are 1.8 MPa and 250 degrees Celsius, and the diameter is d2 = 14 cm. Determine (a) the mass flow rate of the steam and (b) the rate of heat transfer.
Air enters a 0.6m-diameter fan at 16°C, 101 kPa, and is discharged at 18°C, 105 kPa,...
Air enters a 0.6m-diameter fan at 16°C, 101 kPa, and is discharged at 18°C, 105 kPa, with a volumetric flow rate of 0.35 m3 /s. Assuming ideal gas behavior, determine for steady state operation (a) the mass flow rate of air, in kg/s. (b) the volumetric flow rate of air at the inlet, in m3 /s. (c) the inlet and exit velocities, in m/s
Air enters the compressor of a gas-turbine plant at ambient conditions of 100 kPa and 25°C...
Air enters the compressor of a gas-turbine plant at ambient conditions of 100 kPa and 25°C with a low velocity and exits at 1 MPa and 347°C with a velocity of 90 m/s. The compressor is cooled at a rate of 1500 kJ/min, and the power input to the compressor is 250 kW. Determine (a) temperature at the compressor exit Investigate the effect of cooling rate from 1300 kJ/min to 1600 kJ/min in steps of 50 kJ/min on the mass...
Steam enters a diffuser at 250°C and 300kPa with an inlet velocity of 402 m/s. Steam...
Steam enters a diffuser at 250°C and 300kPa with an inlet velocity of 402 m/s. Steam leaves the diffuser at 350°C and 600kPa. The heat gain in the diffuser is 80 kW. The inlet area of the diffuser is 820 cm2. Determine the velocity and the volume flow rate of the steam at the diffuser exit.
Steam enters a horizontal 14-cm-diameter pipe as a saturated vapor at 5 bar with a velocity...
Steam enters a horizontal 14-cm-diameter pipe as a saturated vapor at 5 bar with a velocity of 10 m/s and exits at 4.5 bar with a quality of 95%. Heat transfer from the pipe to the surroundings at 291K takes place at an average outer surface temperature of 400 K. For operation at steady state, determine (a) the velocity at the exit, in m/s. (b) the rate of heat transfer from the pipe, in kW.? (c) the rate of entropy...
Steam enters a horizontal 14-cm-diameter pipe as a saturated vapor at 5 bar with a velocity...
Steam enters a horizontal 14-cm-diameter pipe as a saturated vapor at 5 bar with a velocity of 10 m/s and exits at 4.5 bar with a quality of 95%. Heat transfer from the pipe to the surroundings at 291K takes place at an average outer surface temperature of 400 K. For operation at steady state, determine (a) the velocity at the exit, in m/s. (b) the rate of heat transfer from the pipe, in kW.? (c) the rate of entropy...
A 6.8 cm diameter pipe gradually narrows to 4.0 cm. When water flows through this pipe...
A 6.8 cm diameter pipe gradually narrows to 4.0 cm. When water flows through this pipe at a certain rate, the gauge pressure in these two sections is 33.0 kPa and 24.0 kPa, respectively. What is the volume rate of flow?