Question

a particle of mass m is constrained to move under gravity without friction in side of...

a particle of mass m is constrained to move under gravity without friction in side of paraboloid of revolution whose axis is vertical. find the one dimentional problem equivalent to its motion. what is the condition on particle;s initial velsity to produce circular motion? find the period of small oscilations about this circular motion.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
classical Mechanics problem: Suppose some particle of mass m is confined to move, without friction, in...
classical Mechanics problem: Suppose some particle of mass m is confined to move, without friction, in a vertical plane, with axes x horizontal and y vertically up. The plane is forced to rotate with angular velocity of magnitude Ω about the y axis. Find the equation of motion for x and y, solve them, and describe the possible motions. This is not meant to be a lagrangian problem.
5-7 A particle of mass m moves under the action of gravity on the surface of...
5-7 A particle of mass m moves under the action of gravity on the surface of a horizontal cylinder. a) Obtain the Lagrange motion equations for the particle. b) If the particle slides in a vertical plane having left the top of the cylinder at a very small speed, find the reaction force as a function of the position. c) At what point will the cylinder particle separate?
Goldstein Classical Mechanics, 3rd Edition. Chapter 6; exercise 3 Question: A bead of mass m is...
Goldstein Classical Mechanics, 3rd Edition. Chapter 6; exercise 3 Question: A bead of mass m is constrained to move on a hoop of radius R.The hoop rotates with constant angular velocity small omega around a diameter of the hoop,which is a vertical axis (line along which gravity acts). (a) set up the Lagrangian and obtain the equations of motion of the bead. (b) Find the critical angular velocity large/capital omega below which the bottom of the hoop provides a stable...
particle of mass m moves under a conservative force where the potential energy function is given...
particle of mass m moves under a conservative force where the potential energy function is given by V = (cx) / (x2 + a2 ), and where c and a are positive constants. Find the position of stable equilibrium and the period of small oscillations about it.
A particle of mass m, is under the influence of a force F given by F...
A particle of mass m, is under the influence of a force F given by F = Fo [(sin ωt)ˆi + (cos ωt) ˆj] where F0, ω are positive constants. If at t = 0 the particle is at rest at the origin, find (a) the equations of motion x (t) and y (t) of the particle, and (b) the work done by the force F from t = 0 to t = 2π/ω.
A particle of mass m moves under a force F = −cx^3 where c is a...
A particle of mass m moves under a force F = −cx^3 where c is a positive constant. Find the potential energy function. If the particle starts from rest at x = −a, what is its velocity when it reaches x = 0? Where in the subsequent motion does it instantaneously come to rest?
a) A small block of mass m is confined to move on the inside surface of...
a) A small block of mass m is confined to move on the inside surface of a cone defined by z = aρ, where (ρ, φ, z) give its position in cylindrical coordinates. The block slides without friction along the surface and feels the gravitational force, which is directed in the negative z direction. a. Write down the Lagrangian for the system in terms of the coordinates ρ and φ b) Obtain the Lagrange equations of motion for the coordinate...
A particle with mass 2.61 kg oscillates horizontally at the end of a horizontal spring. A...
A particle with mass 2.61 kg oscillates horizontally at the end of a horizontal spring. A student measures an amplitude of 0.923 m and a duration of 129 s for 65 cycles of oscillation. Find the frequency, ?, the speed at the equilibrium position, ?max, the spring constant, ?, the potential energy at an endpoint, ?max, the potential energy when the particle is located 68.5% of the amplitude away from the equiliibrium position, ?, and the kinetic energy, ?, and...
A small block with mass 0.0400 kg slides in a vertical circle of radius 0.600 m...
A small block with mass 0.0400 kg slides in a vertical circle of radius 0.600 m on the inside of a circular track. During one of the revolutions of the block, when the block is at the bottom of its path, point A, the magnitude of the normal force exerted on the block by the track has magnitude 4.05 N . In this same revolution, when the block reaches the top of its path, point B, the magnitude of the...
A small block with mass 0.0475 kg slides in a vertical circle of radius 0.450 m...
A small block with mass 0.0475 kg slides in a vertical circle of radius 0.450 m on the inside of a circular track. During one of the revolutions of the block, when the block is at the bottom of its path, point A , the magnitude of the normal force exerted on the block by the track has magnitude 3.75 N . In this same revolution, when the block reaches the top of its path, point B , the magnitude...