Question

Billiard ball A strikes another ball B of the same mass, which is at rest, such...

Billiard ball A strikes another ball B of the same mass, which is at rest, such that after the impact they move at angles ΘA and ΘB respectively. The velocity of ball A after impact is 4.10 m/s at an angle ΘA = 32.0 ° while ball B moves with speed 4.20 m/s. Figure showing a layout of the problem as described in text What is ΘB (in degrees)? What is the original speed of ball A before impact?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A billiard ball moving horizontally, labeled 1, strikes another billiard ball at rest, labeled 2. Before...
A billiard ball moving horizontally, labeled 1, strikes another billiard ball at rest, labeled 2. Before impact, ball 1 was moving at a speed of 2.60 m/s, and after impact it is moving at 0.40 m/s at 55° counterclockwise from the direction of the initial velocity. If the two balls have equal masses of 160 g, what is the velocity of ball 2 after the impact? (Assume ball 1 initially moves along the +x-axis. Enter the magnitude in m/s and...
In a game of pool, the cue ball strikes another ball of the same mass and...
In a game of pool, the cue ball strikes another ball of the same mass and initially at rest. After the collision, the cue ball moves at 1.10 m/s along a line making an angle of 15.0° with its original direction of motion, and the second ball has a speed of 0.850 m/s. Find (a) the angle between the direction of motion of the second ball and the original direction of motion of the cue ball and (b) the original...
In a game of pool, the cue ball strikes another ball of the same mass and...
In a game of pool, the cue ball strikes another ball of the same mass and initially at rest. After the collision, the cue ball moves at 1.70 m/s along a line making an angle of 25.0° with its original direction of motion, and the second ball has a speed of 1.40 m/s. Find (a) the angle between the direction of motion of the second ball and the original direction of motion of the cue ball and (b) the original...
A billiard ball moving at 5.80 m/s strikes a stationary ball of the same mass. After...
A billiard ball moving at 5.80 m/s strikes a stationary ball of the same mass. After the collision, the first ball moves at 4.97 m/s, at an angle of 31.0° with respect to the original line of motion. (a) Find the velocity (magnitude and direction) of the second ball after collision. ______ m/s ° (with respect to the original line of motion, include the sign of your answer; consider the sign of the first ball's angle)(b) Was the collision inelastic...
Billiard ball A of mass mA = 0.130 kg moving with speed vA = 2.65 m/s...
Billiard ball A of mass mA = 0.130 kg moving with speed vA = 2.65 m/s strikes ball B, initially at rest, of mass mB = 0.140 kg . As a result of the collision, ball A is deflected off at an angle of 30.5 ∘ with a speed vA1 = 2.35 m/s . A.) Taking the x axis to be the original direction of motion of ball A, write down the equation expressing the conservation of momentum for the...
Billiard ball A of mass mA = 0.130 kg moving with speed vA = 2.65 m/s...
Billiard ball A of mass mA = 0.130 kg moving with speed vA = 2.65 m/s strikes ball B, initially at rest, of mass mB = 0.140 kg . As a result of the collision, ball A is deflected off at an angle of 30.5 ∘ with a speed vA1 = 2.35 m/s . C.) Solve for the speed, vB1, of ball B. Do not assume the collision is elastic. D.) Solve for the angle, θB, of ball B. Do...
Billiard ball A of mass mA = 0.125 kg moving with speed vA = 2.80 m/s...
Billiard ball A of mass mA = 0.125 kg moving with speed vA = 2.80 m/s strikes ball B, initially at rest, of mass mB = 0.138 kg . As a result of the collision, ball A is deflected off at an angle of θ′A = 30.0∘ with a speed v′A = 2.10 m/s, and ball B moves with a speed v′B at an angle of θ′B to original direction of motion of ball A. (a) Solve these equations for...
A billiard ball of mass m = 0.25 kg strikes the cushion of a billiard table...
A billiard ball of mass m = 0.25 kg strikes the cushion of a billiard table at θ1 = 46° and a speed v1 = 25 m/s. It bounces off at an angle of θ2 = 670 and a velocity of v2 = 17 m/s. What is the magnitude of its change in momentum (in kg·m/s)?
A billiard ball of mass m = 0.25 kg strikes the cushion of a billiard table...
A billiard ball of mass m = 0.25 kg strikes the cushion of a billiard table at θ θ 1 = 54° and a speed v1 = 22 m/s. It bounces off at an angle of θ θ 2 = 590 and a velocity of v2 = 15 m/s. What is the magnitude of its change in momentum (in kg·m/s)?
Billiard ball collision in 2-D. Billiard ball A moving with speed vA= 6.9-m/s in the +x...
Billiard ball collision in 2-D. Billiard ball A moving with speed vA= 6.9-m/s in the +x direction strikes an equal-mass ball B initially at rest. The two balls are observed to move off at some unknown angle to the x-axis, ball A above the x-axis and ball B below. If v'A = 2.86-m/s at what angle did ball A go above the x-axis?