Question

A charge q1 = –1 μC is located at (-1 m, 1 m). A second charge...

A charge q1 = –1 μC is located at (-1 m, 1 m). A second charge q2 = +2 μC is located at (2 m, -1 m). How much work is done by the electrical field of these two charges when a third charge q3 = +3 μC is moved from the origin to the point (1 m, 1 m)?

Homework Answers

Answer #1

work done on teh charge q3 is stored in the form of potential energy at that point

that is the electrostatic potential energy of the three charge system is  

U = U12+ U13+U23

U = kq1*q2/r

here r12 = sqrt(3^2+(-2)^2) m = 3.6056 m

r13 = sqrt(2^2+0^2) = 2 m

r23 = sqrt((-1)^2 + (2^2)) m = 2.236068 m

now the potential energies are

u12 = kq1q2/r12 = 9*10^9*(1*10^-6)(2*10^-6)/(3.6056^2)J = 0.001385 J

u13 = kq1q3/r13 = 9*10^9*(1*10^-6)(3*10^-6)/(2^2)J = 0.00675 J

u23 = kq3q2/r12 = 9*10^9*(3*10^-6)(2*10^-6)/(2.236068^2)J = 0.0108 J

the total potential energy = work done  

U = U12+ U13+U23

U = 0.001385 +0.00675 +0.0108 J = 0.018935 J

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1.) An electric charge q1 = 10 μC remains located at the origin of a coordinate...
1.) An electric charge q1 = 10 μC remains located at the origin of a coordinate system. A second electrical charge q2 = 20 μC is moved from point to point. (a) How much work is required by an external force to move the second charge along the x-axis from point (1 m, 0) to (2m, 0)? (b) What is the electric potential at the point (1 m, 0) due to the charge at the origin? (c) What is the...
Three point charges q1=1 μC , q2=2 μC and q3=-3 μC are located at three corners...
Three point charges q1=1 μC , q2=2 μC and q3=-3 μC are located at three corners of a square of side a=2 cm . Charge q3 is located diagonally opposed to the empty corner of the square. Calculate the electric potential created by the three charges at the empty corner of the square. Calculate the work done by the electric field of the three charges when a fourth charge q4=-4 μC moves from the center of the square to the...
Two charges Q1 = -3 μC and Q2 = +3 μC are located on the y-axis...
Two charges Q1 = -3 μC and Q2 = +3 μC are located on the y-axis at y1 = -5 cm and y2 = +5 cm respectively. A third charge Q3 is added on the y-axis at y3 = -10 cm so that the electric field at the origin is equal to zero. What is the charge Q3?
A point charge q1 = +2.40 μC is held stationary at the origin. A second point...
A point charge q1 = +2.40 μC is held stationary at the origin. A second point charge q2 = -4.30 μC moves from the point x = 0.140 m, y = 0, to the point x = 0.255 m, y = 0.255 m. a.) What is the change in the potential energy of the pair of charges? Express your answer with the appropriate units. b.) How much work is done by the electric force on q2q2? Express your answer with...
A negative charge Q1 = -50.0 μC is located at a point X1 = -3.00 m,...
A negative charge Q1 = -50.0 μC is located at a point X1 = -3.00 m, a negative charge Q2 = -100.0 μC is located at a point X2 = 0.00 m and a positive charge Q3 = 70.0 μC is located at a point X3 = 8.00 m.a. Draw free body diagrams for the electric force acting on Q1, Q2 and Q3. b. Find the magnitude of the force between Q1 and Q2. c. Find the magnitude of the...
Consider two point charges located on the x axis: one charge, q1 = -19.5 nC ,...
Consider two point charges located on the x axis: one charge, q1 = -19.5 nC , is located at x1 = -1.720 m ; the second charge, q2 = 30.0 nC , is at the origin (x=0.0000). What is the net force exerted by these two charges on a third charge q3 = 48.5 nC placed between q1 and q2 at x3 = -1.180 m ?
A positive point charge q1 = 3.0 μC is located at x = 0, y =...
A positive point charge q1 = 3.0 μC is located at x = 0, y = 0.30 m, a negative point charge q2 = -3.0 μC is located at x = 0, y = -0.30 m. A third point charge Q = 4.0 μC is located at x = 0.40 m, y = 0. A)What is the magnitude of the total electric force that charges q1 and q2 exert on charge Q? Express your answer in newtons. B)What is the...
Three charges, q1 = +2.5 μC, q2 = -3.6 μC, and q3 = -5.0 μC, are...
Three charges, q1 = +2.5 μC, q2 = -3.6 μC, and q3 = -5.0 μC, are located at the corners of an equilateral triangle with sides of length 0.5 m centered at the origin. The corner locations are at (-0.250 m, -0.145 m), (+0.250 m, -0.145 m), and (0 m,+0.290 m) respectively. Part 1: What is the magnitude of the net ELECTRIC FORCE on the +2.5 μC charge? Part 2: Which of the following is a correct expression for the...
Two point charges q1 and q2 in a x-y coordinator. q1 has a charge of -3nC...
Two point charges q1 and q2 in a x-y coordinator. q1 has a charge of -3nC and located at (-2m, 0), q2 has a charge of 5nC and located at (1m, 0). Calculate following: A) electrical potential at (-1m, 0) B) electrcal field at (-1m, 0) C) if a third charge q3 of -2nC is located at (-1m, 0) position, what is the electrical force on q3.
Charge q1 = 5.5 nC is located at the coordinate system origin, while charge q2 =...
Charge q1 = 5.5 nC is located at the coordinate system origin, while charge q2 = -4.61 nC is located at (a, 0), where a = 0.55 m. The point P has coordinates (a, b), where b = 0.25 m. A third charge q3 = 19 nC will be placed later. a) Find the electric potential VP at point P, in volts. Assume the potential is zero at infinity. b) How much work W, in joules, would you have to...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT